5 Angles

5.1 The Angle Axioms and Basic Theorems

The following is a summary of Section 2.7 of Kay.

Axiom A-1 — Existence of Angle Measure: To every angle \(\angle A \) there corresponds a unique, real number \(\theta = m\angle A \), \(0 < \theta < 180 \), called its measure.

Axiom A-2 — Angle Addition Postulate: If \(D \) lies in the interior of \(\angle ABC \), then \(m\angle ABC = m\angle ABD + m\angle DBC \), and conversely.

Axiom A-3 — Protractor Postulate: The set of rays having a common origin \(O \) and lying on one side of line \(\ell = \overrightarrow{OA} \), including ray \(\overrightarrow{OA} \), may be assigned to the real numbers \(\theta \) for which \(0 \leq \theta < 180 \), called coordinates, in such a manner that

1. Each ray is assigned a unique coordinate \(\theta \).
2. Each coordinate \(\theta \) is assigned to a unique ray.
3. The coordinate of \(\overrightarrow{OA} \) is 0.
4. If rays \(\overrightarrow{OP} \) and \(\overrightarrow{OQ} \) have coordinates \(\theta \) and \(\phi \), respectively, then \(m\angle POQ = |\theta - \phi| \).

Definition: Suppose that \(\overrightarrow{OA} \), \(\overrightarrow{OB} \), and \(\overrightarrow{OC} \) are concurrent rays, all having the same endpoint \(O \). Then if these rays are distinct (no two are the same ray), and if \(m\angle AOB + m\angle BOC = m\angle AOC \), then \(\overrightarrow{OB} \) is said to lie between \(\overrightarrow{OA} \) and \(\overrightarrow{OC} \), and we write \(\overrightarrow{OA} \overrightarrow{OB} \overrightarrow{OC} \).
Notation: Write $A[a]$ if a is the coordinate of a point A under the Ruler Postulate. Write $\overrightarrow{OA}[a]$ if a is the coordinate of a ray \overrightarrow{OA} under the Protractor Postulate.

Theorem 2.7.1: If $A[a]$, $B[b]$, and $C[c]$ are three collinear points (and $\overrightarrow{OA}[a]$, $\overrightarrow{OB}[b]$, $\overrightarrow{OC}[c]$ three concurrent rays) with their coordinates, then $A-B-C$ ($\overrightarrow{OA}-\overrightarrow{OB}-\overrightarrow{OC}$) if and only if $a < b < c$ or $c < b < a$. (This is Theorem 1 of Kay, Section 2.7.)

Corollary: Suppose that four distinct collinear points are given with their coordinates: $A[a]$, $B[b]$, $C[c]$, $D[d]$. If $A-B-C$ and $A-C-D$, then $A-B-C-D$, and similarly for rays $\overrightarrow{OA}[a]$, $\overrightarrow{OB}[b]$, $\overrightarrow{OC}[c]$, $\overrightarrow{OD}[d]$.

Lemma: A segment, ray, or line is a convex set.

Lemma: If A and B are two distinct points, and $C \in \overrightarrow{AB}$, with $A \neq C$, then $\overrightarrow{AB} \subseteq \overrightarrow{AC}$.

Theorem 2.7.2: If $C \in \overrightarrow{AB}$ and $A \neq C$, then $\overrightarrow{AB} = \overrightarrow{AC}$. (This is Theorem 2 of Kay, Section 2.7.)

Theorem 2.7.3 (Segment Construction Theorem): If \overrightarrow{AB} and \overrightarrow{XY} are any two segments and $AB \neq XY$, then there is a unique point C on ray \overrightarrow{AB} such that $AC = XY$, with $A-C-B$ if $XY < AB$, or $A-B-C$ if $XY > AB$. (This is Theorem 3 of Kay, Section 2.7.)

36
Definition: A point M on a segment \overline{AB} is called a *midpoint* if it has the property that $AM = MB$. Such a midpoint is also said to *bisect* the segment, and any line, segment, or ray passing through that midpoint is also said to *bisect* the segment.

Theorem 2.7.4 (Midpoint Construction Theorem): The midpoint of any segment exists and is unique. (This is Theorem 4 of Kay, Section 2.7.)

Theorem 2.7.5 (Segment Doubling Theorem): There exists a unique point C on ray \overrightarrow{AB} such that B is the midpoint of \overline{AC}. (This is Theorem 5 of Kay, Section 2.7.)

Definition: A ray \overrightarrow{OM} such that $\overrightarrow{OA} - \overrightarrow{OM} - \overrightarrow{OB}$ is said to be an *angle bisector* of $\angle AOB$ if $m\angle AOM = m\angle OMB$. Any line or ray containing an angle bisector is said to *bisect* the angle.

Theorem 2.7.3’ (Angle Construction Theorem): If $\angle ABC$ and $\angle XYZ$ are any two nondegenerate angles and $m\angle ABC \neq m\angle XYZ$, then there exists a unique ray \overrightarrow{BD} on the C-side of \overrightarrow{AB} such that $m\angle XYZ = m\angle ABD$, and either $\overrightarrow{BA-\overrightarrow{BD}-\overrightarrow{BC}}$ if $m\angle XYZ < m\angle ABC$, or $\overrightarrow{BA-\overrightarrow{BC}-\overrightarrow{BD}}$ if $m\angle XYZ > m\angle ABC$. (This is Theorem 3’ of Kay, Section 2.7.)

Theorem 2.7.4’ (Angle Bisection Theorem): Every angle has a unique bisector. (This is Theorem 4’ of Kay, Section 2.7.)
Theorem 2.7.5’ (Angle Doubling Theorem): Given any angle $\angle ABC$ having measure < 90, there exists a ray \overrightarrow{BD} such that \overrightarrow{BC} is the bisector of $\angle ABD$. (This is Theorem 5’ of Kay, Section 2.7.)
5.2 More Theorems on Angles

This is a summary of Section 2.8 of Kay.

Theorem 2.8.1 (Crossbar Theorem): If D is in the interior of $\angle BAC$, then ray \overrightarrow{AD} meets segment \overline{BC} at some interior point E. (This is Theorem 1 of Kay, Section 2.8.)

Definition: If $A-B-C$ then \overrightarrow{BA} and \overrightarrow{BC} are called opposite rays.

Lemma: For every ray \overrightarrow{PQ} there exists a unique opposite ray.

Definition: If the sides of one angle are opposite rays to the respective sides of another angle, the angles are said to form a vertical pair.

Definition: Two angles are said to form a linear pair iff they have one side in common and the other two sides are opposite rays. We call any two angles whose angle measures sum to 180 a supplementary pair, or more simply, supplementary, and two angles whose angle measures sum to 90 a complementary pair, or complementary.

Theorem 2.8.2: Two angles which are supplementary (or complementary) to the same angle have equal angle measures. (This is Theorem 2 of Kay, Section 2.8.)
Axiom A-4: A linear pair of angles is a supplementary pair.

Theorem 2.8.3 (Vertical Pair Theorem): Vertical angles have equal measures. (This is Theorem 3 of Kay, Section 2.8.)

Definition: If line \(\ell \) intersects another line \(m \) at some point \(A \) and forms a supplementary pair of angles at \(A \) having equal measures, then \(\ell \) is said to be **perpendicular** to \(m \), and we write \(\ell \perp m \).

Definition: An angle having measure 90 is called a **right angle**. Angles having measure less than 90 are **acute angles**, and those with measure greater than 90, **obtuse angles**.

Theorem 2.8.4: One line is perpendicular to another line iff the two lines form four right angles at their point of intersection. (This is Theorem 4 of Kay, Section 2.8.)

Corollary: Line \(\ell \) is perpendicular to line \(m \) iff \(\ell \) and \(m \) contains the sides of a right angle.

Theorem 2.8.5 (Existence and Uniqueness of Perpendiculars): Suppose that in some plane line \(m \) is given an an arbitrary point \(A \) on \(m \) is located. Then there exists a unique line \(\ell \) that is perpendicular to \(m \) at \(A \). (This is Theorem 5 of Kay, Section 2.8.)