8 Circles

8.1 Basic Results

This material is summarized from Section 3.8 of Kay.

Definition: A circle is the set of points in a plane which lie at a positive, fixed distance \(r \) from some fixed point \(O \). The number \(r \) is called the radius (as well as any line segment joining point \(O \) to any point on the circle), and the fixed point \(O \) is called the center of the circle. A point \(P \) is said to be interior to the circle, or an interior point, whenever \(OP < r \); if \(OP > r \), then \(P \) is said to be an exterior point.

Look at the diagram in the book to clarify the definitions of the following terms: diameter, radius, chord, secant (line), tangent (line) and point of contact or tangency, central angle, inscribed angle, semicircle, angle inscribed in a semicircle, arc, subtended or intercepted arc or chord of an angle.

Lemma:

1. The center of a circle is the midpoint of any diameter.

2. The perpendicular bisector of any chord of a circle passes through the center.

3. A line passing through the center of a circle and perpendicular to a chord bisects the chord.

4. Two congruent central angles subtend congruent chords, and conversely.

5. Two chords equidistant from the center of a circle have equal lengths, and conversely.
Definition: A *minor arc* is the intersection of the circle with a central angle and its interior, a *semicircle* is the intersection of the circle with a closed half-plane whose edge passes through O, and a *major arc* of a circle is the intersection of the circle and a central angle and its exterior (that is, the complement of a minor arc, plus endpoints). If the endpoints of an arc are A and B, and C is any other point of the arc (which must be used in order to uniquely identify the arc), then we define the *measure* $m\widehat{ACB}$ of the arc as follows:

1. Minor arc: $m\widehat{ACB} = m\angle AOB$.
2. Semicircle: $m\widehat{ACB} = 180$.
3. Major arc: $m\widehat{ACB} = 360 - m\angle AOB$.

Given a circle with center O and ray \overrightarrow{OP}, let H_1 be one of the half-planes associated with \overrightarrow{OP}. Assign coordinates $0 \leq \theta < 180$ to \overrightarrow{OP} and rays in this half-plane as before. Assign the coordinate 180 to the opposite ray of \overrightarrow{OP}. Assign coordinates $-180 < \theta < 0$ to the rays in the half-plane H_2 opposite to H_1, the negative of the coordinate that would have ordinarily been assigned with respect to H_2.

Lemma: For any arc \widehat{ACB} on circle O, if P' lies in the complementary arc of \widehat{ACB} and $a > b$ are the coordinates of rays \overrightarrow{OA} and \overrightarrow{OB}, respectively, relative to the half-planes determined by line $\overrightarrow{PP'}$, then $m\widehat{ACB} = a - b$.

Theorem 3.8.1: Suppose arcs $A_1 = \widehat{ADC}$ and $A_2 = \widehat{CEB}$ are any two arcs of circle O having just one point C in common, and such that their union, $A_1 \cup A_2 = \widehat{ACB}$, is also an arc. Then $m(A_1 \cup A_2) = mA_1 + mA_2$. (This is Theorem 1 of Section 3.8 of Kay.)

67
Theorem 3.8.2: A line is tangent to a circle iff it is perpendicular to the radius at the point of contact. (This is Theorem 2 of Section 3.8 of Kay.)

Theorem 3: If a line ℓ passes through an interior point A of a circle, it is a secant of the circle, intersecting the circle in precisely two points. (This is Theorem 3 of Section 3.8 of Kay.)
8.2 Circles on Spheres

Consider a circle of radius r (as measured along the surface of a sphere) on a sphere of radius 1. Determine a formula for the circumference and the spherical area of the circle.