Contents

1 References
2 Exercises: Linear Algebra
3 Introduction
 3.1 Example
 3.2 Definitions
 3.3 Back to the Example
4 Exercises: Linear Programs
5 Solving Linear Programs
 5.1 Matrices
 5.2 Four Vector Spaces Associated with a Matrix
 5.3 Graphs and Digraphs
 5.4 Systems of Equations
 5.5 Solving Linear Programs
 5.6 The Revised Simplex Method
6 Theorems of the Alternatives
 6.1 Systems of Equations
 6.2 Fourier-Motzkin Elimination — A Starting Example
 6.3 Showing our Example is Feasible
 6.4 An Example of an Infeasible System
 6.5 Fourier-Motzkin Elimination in General
 6.6 More Alternatives
7 Exercises: Systems of Linear Inequalities
8 Duality
 8.1 Economic Motivation
 8.2 The Dual Linear Program
 8.3 The Duality Theorems
 8.4 Comments on Good Characterization
 8.5 Complementary Slackness
 8.6 Duals of General LP’s
 8.7 Geometric Motivation of Duality

ii
9 Exercises: Duality

10 The Simplex Method
10.1 Bases and Tableaux .. 62
10.2 Pivoting .. 69
10.3 The (Primal) Simplex Method 74

11 Exercises: The Simplex Method 86

12 The Simplex Method—Further Considerations 90
12.1 Uniqueness .. 90
12.2 Revised Simplex Method 90
12.3 Dual Simplex Method 93
12.4 Revised Dual Simplex Method 95
12.5 Sensitivity Analysis 97
 12.5.1 Right Hand Sides 98
 12.5.2 Objective Function Coefficients 100
 12.5.3 New Variable 103
 12.5.4 New Constraint 104
12.6 LP’s With Equations .. 105
12.7 LP’s With Unrestricted Variables 108
12.8 LP’s With Bounded Variables 108
12.9 Minimization Problems 112

13 Exercises: More On the Simplex Method 113
1 References

Four good references for linear programming are

I used some material from these sources in writing these notes. Also, some of the exercises were provided by Jon Lee and Francois Margot. Thanks in particular to Francois Margot for many useful suggestions for improving these notes.

Exercise 1.1 Find as many errors in these notes as you can and report them to me. □
2 Exercises: Linear Algebra

It is important to have a good understanding of the content of a typical one-semester undergraduate matrix algebra course. Here are some exercises to try. Note: Unless otherwise specified, all of my vectors are column vectors. If I want a row vector, I will transpose a column vector.

Exercise 2.1 Consider the product \(\textbf{C} = \textbf{AB} \) of two matrices \(\textbf{A} \) and \(\textbf{B} \). What is the formula for \(c_{ij} \), the entry of \(\textbf{C} \) in row \(i \), column \(j \)? Explain why we can regard the \(i \)th row of \(\textbf{C} \) as a linear combination of the rows of \(\textbf{B} \). Explain why we can regard the \(j \)th column of \(\textbf{C} \) as a linear combination of the columns of \(\textbf{A} \). Explain why we can regard the \(i \)th row of \(\textbf{C} \) as a sequence of inner products of the columns of \(\textbf{B} \) with a common vector. Explain why we can regard the \(j \)th column of \(\textbf{C} \) as a sequence of inner products of the rows of \(\textbf{A} \) with a common vector. Consider the block matrices

\[
\begin{bmatrix} \textbf{A} & \textbf{B} \\ \textbf{C} & \textbf{D} \end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix} \textbf{E} & \textbf{F} \\ \textbf{G} & \textbf{H} \end{bmatrix}.
\]

Assume that the number of columns of \(\textbf{A} \) and \(\textbf{C} \) equals the number of rows of \(\textbf{E} \) and \(\textbf{F} \), and that the number of columns of \(\textbf{B} \) and \(\textbf{D} \) equals the number of rows of \(\textbf{G} \) and \(\textbf{H} \). Describe the product of these two matrices.

Exercise 2.2 Associated with a matrix \(\textbf{A} \) are four vector spaces. What are they, how can you find a basis for each, and how are their dimensions related? Give a “natural” basis for the nullspace of the matrix \(\begin{bmatrix} \textbf{A} & \textbf{I} \end{bmatrix} \), where \(\textbf{A} \) is an \(m \times n \) matrix and \(\textbf{I} \) is an \(m \times m \) identity matrix concatenated onto \(\textbf{A} \).

Exercise 2.3 Suppose \(V \) is a set of the form \(\{ \textbf{Ax} : x \in \mathbb{R}^k \} \), where \(\textbf{A} \) is an \(n \times k \) matrix. Prove that \(V \) is also a set of the form \(\{ \textbf{y} \in \mathbb{R}^n : \textbf{By} = \textbf{O} \} \) where \(\textbf{B} \) is an \(\ell \times n \) matrix, and explain how to find an appropriate matrix \(\textbf{B} \). Conversely, suppose \(V \) is a set of the form \(\{ \textbf{y} \in \mathbb{R}^n : \textbf{By} = \textbf{O} \} \), where \(\textbf{B} \) is an \(\ell \times n \) matrix. Prove that \(V \) is also a set of the form \(\{ \textbf{Ax} : x \in \mathbb{R}^k \} \), where \(\textbf{A} \) is an \(n \times k \) matrix, and explain how to find an appropriate matrix \(\textbf{A} \).

Exercise 2.4 Consider a linear system of equations, \(\textbf{Ax} = \textbf{b} \). What are the various elementary row operations that can be used to obtain an equivalent system? What does it mean for two systems to be equivalent?

Exercise 2.5 Consider a linear system of equations, \(\textbf{Ax} = \textbf{b} \). Describe the set of all solutions to this system. Explain how to use Gaussian elimination to determine this set. Prove that the system has no solution if and only if there is a vector \(\textbf{y} \) such that \(\textbf{y}^T \textbf{A} = \textbf{O}^T \) and \(\textbf{y}^T \textbf{b} \neq 0 \).
Exercise 2.6 If \(x \in \mathbb{R}^n \), what is the definition of \(\|x\|_1 \)? Of \(\|x\|_2 \)? Of \(\|x\|_\infty \)? For fixed matrix \(A \) (not necessarily square) and vector \(b \), explain how to minimize \(\|Ax - b\|_2 \). Note: From now on in these notes, if no subscript appears in the notation \(\|x\| \), then the norm \(\|x\|_2 \) is meant. □

Exercise 2.7 Consider a square \(n \times n \) matrix \(A \). What is the determinant of \(A \)? How can it be expressed as a sum with \(n! \) terms? How can it be expressed as an expansion by cofactors along an arbitrary row or column? How is it affected by the application of various elementary row operations? How can it be determined by Gaussian elimination? What does it mean for \(A \) to be singular? Nonsingular? What can you tell about the determinant of \(A \) from the dimensions of each of the four vector spaces associated with \(A \)? The determinant of \(A \) describes the volume of a certain geometrical object. What is this object? □

Exercise 2.8 Consider a linear system of equations \(Ax = b \) where \(A \) is square and nonsingular. Describe the set of all solutions to this system. What is Cramer’s rule and how can it be used to find the complete set of solutions? □

Exercise 2.9 Consider a square matrix \(A \). When does it have an inverse? How can Gaussian elimination be used to find the inverse? How can Gauss-Jordan elimination be used to find the inverse? Suppose \(e_j \) is a vector of all zeroes, except for a 1 in the \(j \)th position. What does the solution to \(Ax = e_j \) have to do with \(A^{-1} \)? What does the solution to \(x^T A = e_j^T \) have to do with \(A^{-1} \)? Prove that if \(A \) is a nonsingular matrix with integer entries and determinant \(\pm 1 \), then \(A^{-1} \) is also a matrix with integer entries. Prove that if \(A \) is a nonsingular matrix with integer entries and determinant \(\pm 1 \), and \(b \) is a vector with integer entries, then the solution to \(Ax = b \) is an integer vector. □

Exercise 2.10 What is \(LU \) factorization? What is \(QR \) factorization, Gram-Schmidt orthogonalization, and their relationship? □

Exercise 2.11 What does it mean for a matrix to be orthogonal? Prove that if \(A \) is orthogonal and \(x \) and \(y \) are vectors, then \(\|x - y\|_2 = \|Ax - Ay\|_2 \); i.e., multiplying two vectors by \(A \) does not change the Euclidean distance between them. □

Exercise 2.12 What is the definition of an eigenvector and an eigenvalue of a square matrix? The remainder of the questions in this problem concern matrices over the real numbers, with real eigenvalues and eigenvectors. Find a square matrix with no eigenvalues. Prove that if \(A \) is a symmetric \(n \times n \) matrix, there exists a basis for \(\mathbb{R}^n \) consisting of eigenvectors of \(A \). □
Exercise 2.13 What does it mean for a symmetric matrix A to be positive semi-definite? Positive definite? If A is positive definite, describe the set $\{ x : x^T A x \leq 1 \}$. What is the geometrical interpretation of the eigenvectors and eigenvalues of A with respect to this set? □

Exercise 2.14 Suppose E is a finite set of vectors in \mathbb{R}^n. Let V be the vector space spanned by the vectors in E. Let $\mathcal{I} = \{ S \subseteq E : S$ is linearly independent$\}$. Let $\mathcal{C} = \{ S \subseteq E : S$ is linearly dependent, but no proper subset of S is linearly dependent$\}$. Let $\mathcal{B} = \{ S \subseteq E : S$ is a basis for V\}. Prove the following:

1. $\emptyset \in \mathcal{I}$.

2. If $S_1 \in \mathcal{I}$, $S_2 \in \mathcal{I}$, and $\text{card } S_2 > \text{card } S_1$, then there exists an element $e \in S_2 \setminus S_1$ such that $S_1 \cup \{e\} \in \mathcal{I}$.

3. If $S \in \mathcal{I}$ and $S \cup \{e\}$ is dependent, then there is exactly one subset of $S \cup \{e\}$ that is in \mathcal{C}.

4. If $S_1 \in \mathcal{B}$ and $S_2 \in \mathcal{B}$, then $\text{card } S_1 = \text{card } S_2$.

5. If $S_1 \in \mathcal{B}$, $S_2 \in \mathcal{B}$, and $e_1 \in S_1$, then there exists an element $e_2 \in S_2$ such that $(S_1 \setminus \{e_1\}) \cup \{e_2\} \in \mathcal{B}$.

6. If $S_1 \in \mathcal{C}$, $S_2 \in \mathcal{C}$, $e \in S_1 \cap S_2$, and $e' \in S_1 \setminus S_2$, then there is a set $S_3 \in \mathcal{C}$ such that $S_3 \subseteq (S_1 \cup S_2) \setminus \{e\}$ and $e' \in S_3$.

□
3 Introduction

3.1 Example

Consider a hypothetical company that manufactures gadgets and gewgaws.

1. One kilogram of gadgets requires 1 hour of labor, 1 unit of wood, 2 units of metal, and yields a net profit of 5 dollars.

2. One kilogram of gewgaws requires 2 hours of labor, 1 unit of wood, 1 unit of metal, and yields a net profit of 4 dollars.

3. Available are 120 hours of labor, 70 units of wood, and 100 units of metal.

What is the company’s optimal production mix? We can formulate this problem as the linear program

$$\begin{align*}
\text{max } & \quad z = 5x_1 + 4x_2 \\
\text{s.t. } & \quad x_1 + 2x_2 \leq 120 \\
& \quad x_1 + x_2 \leq 70 \\
& \quad 2x_1 + x_2 \leq 100 \\
& \quad x_1, x_2 \geq 0
\end{align*}$$

In matrix notation, this becomes

$$\begin{align*}
\text{max } & \quad \begin{bmatrix} 5 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\
\text{s.t. } & \quad \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 120 \\ 70 \\ 100 \end{bmatrix} \\
& \quad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \geq \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\end{align*}$$

which is a problem of the form

$$\begin{align*}
\text{max } & \quad c^T x \\
\text{s.t. } & \quad Ax \leq b \\
& \quad x \geq 0
\end{align*}$$

We can determine the solution of this problem geometrically. Graph the set of all points that satisfy the constraints. Draw some lines for which the objective function assumes a constant value (note that these are all parallel). Find the line with the highest value of z that has nonempty intersection with the set of feasible points. In this case the optimal solution is $(30, 40)$ with optimal value 310.
3.2 Definitions

A linear function is a function of the form \(a_1 x_1 + \cdots + a_n x_n \), where \(a_1, \ldots, a_n \in \mathbb{R} \). A linear equation is an equation of the form \(a_1 x_1 + \cdots + a_n x_n = \beta \), where \(a_1, \ldots, a_n, \beta \in \mathbb{R} \). If there exists at least one nonzero \(a_j \), then the set of solutions to a linear equation is called a hyperplane. A linear inequality is an inequality of the form \(a_1 x_1 + \cdots + a_n x_n \leq \beta \) or \(a_1 x_1 + \cdots + a_n x_n \geq \beta \), where \(a_1, \ldots, a_n, \beta \in \mathbb{R} \). If there exists at least one nonzero \(a_j \), then the set of solutions to a linear inequality is called a halfspace. A linear constraint is a linear equation or linear inequality.

A linear programming problem is a problem in which a linear function is to be maximized (or minimized), subject to a finite number of linear constraints. A feasible solution or feasible point is a point that satisfies all of the constraints. If such a point exists, the problem is feasible; otherwise, it is infeasible. The set of all feasible points is called the feasible region or feasible set. The objective function is the linear function to be optimized. An optimal solution or optimal point is a feasible point for which the objective function is optimized. The value of the objective function at an optimal point is the optimal value of the linear program. In the case of a maximization (minimization) problem, if arbitrarily large (small) values of the objective function can be achieved, then the linear program is said to be unbounded. More precisely, the maximization (minimization) problem is unbounded if for all \(M \in \mathbb{R} \) there exists a feasible point \(x \) with objective function value greater than (less than) \(M \). Note: It is possible to have a linear program that has bounded objective function value but unbounded feasible region, so don’t let this confusing terminology confuse you. Also note
that an infeasible linear program has a bounded feasible region.

Exercise 3.1 Graphically construct some examples of each of the following types of two-variable linear programs:

1. Infeasible.
2. With a unique optimal solution.
3. With more than one optimal solution.
4. Feasible with bounded feasible region.
5. Feasible and bounded but with unbounded feasible region.
6. Unbounded.

A linear program of the form

$$\begin{align*}
\max \sum_{j=1}^{n} c_j x_j \\
\text{s.t.} \sum_{j=1}^{n} a_{ij} x_j &\leq b_i, \quad i = 1, \ldots, m \\
x_j &\geq 0, \quad j = 1, \ldots, n
\end{align*}$$

which, in matrix form, is

$$\begin{align*}
\max c^T x \\
\text{s.t.} \quad Ax &\leq b \\
x &\geq 0
\end{align*}$$

is said to be in *standard form*. For every linear program there is an equivalent one in standard form (begin thinking about this).

3.3 Back to the Example

Suppose someone approached the Gadget and Gewgaw Manufacturing Company (GGMC), offering to purchase the company’s available labor hours, wood, and metal, at $1.50 per hour of labor, $1 per unit of wood, and $1 per unit of metal. They are willing to buy whatever amount GGMC is willing to sell. Should GGMC sell everything? This is mighty
tempting, because they would receive $350, more than what they would gain by their current manufacturing plan. However, observe that if they manufactured some gadgets instead, for each kilogram of gadgets they would lose $4.50 from the potential sale of their resources but gain $5 from the sale of the gadgets. (Note, however, that it would be better to sell their resources than make gewgaws.) So they should not accept the offer to sell all of their resources at these prices.

Exercise 3.2 In the example above, GGMC wouldn’t want to sell all of their resources at those prices. But they might want to sell some. What would be their best strategy? □

Exercise 3.3 Suppose now that GGMC is offered $3 for each unit of wood and $1 for each unit of metal that they are willing to sell, but no money for hours of labor. Explain why they would do just as well financially by selling all of their resources as by manufacturing their products. □

Exercise 3.4 In general, what conditions would proposed prices have to satisfy to induce GGMC to sell all of their resources? If you were trying to buy all of GGMC’s resources as cheaply as possible, what problem would you have to solve? □

Exercise 3.5 If you want to purchase just one hour of labor, or just one unit of wood, or just one unit of metal, from GGMC, what price in each case must you offer to induce GGMC to sell? □
4 Exercises: Linear Programs

Exercise 4.1 Consider the following linear program (P):

\[
\begin{align*}
\text{max } z &= x_1 + 2x_2 \\
\text{s.t. } 3x_1 + x_2 &\leq 3 \quad (1) \\
x_1 + x_2 &\leq 3/2 \quad (2) \\
x_1 &\geq 0 \quad (3) \\
x_2 &\geq 0 \quad (4)
\end{align*}
\]

1. Graph the feasible region.
2. Locate the optimal point(s).
3. Explain why the four constraints have the following respective outer normal vectors (an outer normal vector to a constraint is perpendicular to the defining line of the constraint and points in the opposite direction of the shaded side of the constraint):

 (1) $[3, 1]^T$.
 (2) $[1, 1]^T$.
 (3) $[-1, 0]^T$.
 (4) $[0, -1]^T$.

 Explain why the gradient of the objective function is the vector $[1, 2]^T$. For each corner point of the feasible region, compare the outer normals of the binding constraints at that point (the constraints satisfied with equality by that point) with the gradient of z. From this comparison, how can you tell geometrically if a given corner point is optimal or not?

4. Vary the objective function coefficients and consider the following linear program:

\[
\begin{align*}
\text{max } z &= c_1x_1 + c_2x_2 \\
\text{s.t. } 3x_1 + x_2 &\leq 3 \\
x_1 + x_2 &\leq 3/2 \\
x_1, x_2 &\geq 0
\end{align*}
\]

Carefully and completely describe the optimal value $z^*(c_1, c_2)$ as a function of the pair (c_1, c_2). What kind of function is this? Optional: Use some software such as Maple to plot this function of two variables.
5. Vary the right hand sides and consider the following linear program:

\[
\begin{align*}
\text{max } z &= x_1 + 2x_2 \\
\text{s.t.} & \quad 3x_1 + x_2 \leq b_1 \tag{1} \\
& \quad x_1 + x_2 \leq b_2 \tag{2} \\
& \quad x_1, x_2 \geq 0 \tag{3}
\end{align*}
\]

Carefully and completely describe the optimal value \(z^*(b_1, b_2) \) as a function of the pair \((b_1, b_2)\). What kind of function is this? Optional: Use some software such as Maple to plot this function of two variables.

6. Find the best nonnegative integer solution to \((P)\). That is, of all feasible points for \((P)\) having integer coordinates, find the one with the largest objective function value.

\[\square\]

Exercise 4.2 Consider the following linear program \((P)\):

\[
\begin{align*}
\text{max } z &= -x_1 - x_2 \\
\text{s.t.} & \quad x_1 \leq 1/2 \tag{1} \\
& \quad x_1 - x_2 \leq -1/2 \tag{2} \\
& \quad x_1 \geq 0 \tag{3} \\
& \quad x_2 \geq 0 \tag{4}
\end{align*}
\]

Answer the analogous questions as in Exercise 4.1. \[\square\]

Exercise 4.3 1. Consider the following linear program \((P)\):

\[
\begin{align*}
\text{max } z &= 2x_1 + x_2 \\
\text{s.t.} & \quad x_1 \leq 2 \tag{1} \\
& \quad x_2 \leq 2 \tag{2} \\
& \quad x_1 + x_2 \leq 4 \tag{3} \\
& \quad x_1 - x_2 \leq 1 \tag{4} \\
& \quad x_1 \geq 0 \tag{5} \\
& \quad x_2 \geq 0 \tag{6}
\end{align*}
\]

Associated with each of the 6 constraints is a line (change the inequality to equality in the constraint). Consider each pair of constraints for which the lines are not parallel, and examine the point of intersection of the two lines. Call this pair of constraints a **primal feasible pair** if the intersection point falls in the feasible region for \((P)\). Call
this pair of constraints a dual feasible pair if the gradient of the objective function can be expressed as a nonnegative linear combination of the two outer normal vectors of the two constraints. (The motivation for this terminology will become clearer later on.) List all primal-feasible pairs of constraints, and mark the intersection point for each pair. List all dual-feasible pairs of constraints (whether primal-feasible or not), and mark the intersection point for each pair. What do you observe about the optimal point(s)?

2. Repeat the above exercise for the GGMC problem.

Exercise 4.4 We have observed that any two-variable linear program appears to fall into exactly one of three categories: (1) those that are infeasible, (2) those that have unbounded objective function value, and (3) those that have a finite optimal objective function value. Suppose (P) is any two-variable linear program that falls into category (1). Into which of the other two categories can (P) be changed if we only alter the right hand side vector b? The objective function vector c? Both b and c? Are your answers true regardless of the initial choice of (P)? Answer the analogous questions if (P) is initially in category (2). In category (3). □

Exercise 4.5 Find a two-variable linear program

\[
(P) \quad \begin{array}{c}
\max c^T x \\
\text{s.t. } Ax \leq b \\
x \geq O
\end{array}
\]

with associated integer linear program

\[
(IP) \quad \begin{array}{c}
\max c^T x \\
\text{s.t. } Ax \leq b \\
x \geq O \text{ and integer}
\end{array}
\]

such that (P) has unbounded objective function value, but (IP) has a finite optimal objective function value. Note: “x integer” means that each coordinate \(x_j\) of \(x\) is an integer. □

Exercise 4.6 Prove the following: For each positive real number \(d\) there exists a two-variable linear program (P) with associated integer linear program (IP) such that the entries of \(A\), \(b\), and \(c\) are rational, (P) has a unique optimal solution \(x^*\), (IP) has a unique optimal solution \(\overline{x}^*\), and the Euclidean distance between \(x^*\) and \(\overline{x}^*\) exceeds \(d\). Can you do the same with a one-variable linear program? □
Exercise 4.7 Find a subset S of \mathbb{R}^2 and a linear objective function $c^T x$ such that the optimization problem
\[
\max c^T x \\
\text{s.t. } x \in S
\]
is feasible, has no optimal objective function value, but yet does not have unbounded objective function value. \(\square\)

Exercise 4.8 Find a quadratic objective function $f(x)$, a matrix A with two columns, and a vector b such that the optimization problem
\[
\max f(x) \\
\text{s.t. } Ax \leq b \\
x \geq O
\]
has a unique optimal solution, but not at a corner point. \(\square\)

Exercise 4.9 (Chvátal problem 1.5.) Prove or disprove: If the linear program
\[
(P) \max c^T x \\
\text{s.t. } Ax \leq b \\
x \geq O
\]
is unbounded, then there is a subscript k such that the linear program
\[
\max x_k \\
\text{s.t. } Ax \leq b \\
x \geq O
\]
is unbounded. \(\square\)

Exercise 4.10 (Bertsimas and Tsitsiklis problem 1.12.) Consider a set $S \subseteq \mathbb{R}^n$ described by the constraints $Ax \leq b$. The ball with center $y \in \mathbb{R}^n$ and radius $r \in \mathbb{R}_+$ is defined as $\{x \in \mathbb{R}^n : \|x - y\| \leq r\}$. Construct a linear program to solve the problem of finding a ball with the largest possible radius that is entirely contained within the set S. \(\square\)

Exercise 4.11 Chvátal, problems 1.1–1.4. \(\square\)
5 Solving Linear Programs

5.1 Matrices

Suppose A is an $m \times n$ matrix, B is an $n \times p$ matrix, and $C = AB$. Then

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}, \ i = 1, \ldots, m, \ k = 1, \ldots, p.$$

We can recognize this as the inner product of the ith row of A with the kth column of B:

$$c_{ik} = [a_{i1}, \ldots, a_{in}] \begin{bmatrix} b_{1k} \\ \vdots \\ b_{nk} \end{bmatrix}.$$

We can also see that the ith row of C is a linear combination of the rows of B using as coefficients the entries in the ith row of A:

$$[c_{i1}, \ldots, c_{ip}] = a_{i1} [b_{11}, \ldots, b_{1p}] + \cdots + a_{in} [b_{n1}, \ldots, b_{np}],$$

and the kth column of C is a linear combination of the columns of A using as coefficients the entries in the kth column of B:

$$\begin{bmatrix} c_{1k} \\ \vdots \\ c_{mk} \end{bmatrix} = b_{1k} \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + \cdots + b_{nk} \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix}.$$

5.2 Four Vector Spaces Associated with a Matrix

Definition 5.1 Let A be an $m \times n$ matrix. The four vector spaces associated with A are:

1. The **column space** of A. This is the space of all linear combinations of the columns of A, columnspace(A) = \{ $Ax : x \in \mathbb{R}^n$ \}.

2. The **row space** of A. This is the space of all linear combinations of the rows of A, rowspace(A) = \{ $y^T A : y \in \mathbb{R}^m$ \}.

3. The **nullspace** of A, nullspace(A) = \{ $x \in \mathbb{R}^n : Ax = O$ \}.

4. The **left nullspace** of A, leftnullspace(A) = \{ $y \in \mathbb{R}^m : y^T A = O^T$ \}.

13
To find bases for each of the four spaces, perform Gaussian elimination on A to obtain a matrix A' in row-reduced form. By multiplying the matrices corresponding to the various row operations, determine the square invertible matrix M such that $MA = A'$. The leading nonzero entries in each nonzero row of A' are called the \textit{pivot entries}. The rows in which they appear are called the \textit{pivot rows}, and the columns in which they appear are called the \textit{pivot columns}. You should be able to verify the following assertions:

1. To obtain a basis for the column space of A select the columns of A corresponding to the pivot columns of A'. Note that A and A' do not necessarily have the same column space, but their column spaces have the same dimension, namely, the number of pivot entries.

2. The nonzero rows of A' form a basis for the row space of A. Hence they have the same dimension, namely, the number of pivot entries.

3. Matrices A and A' have the same nullspace. There is one basis vector for each nonpivot column A'_s of A': Set $w_s = 1$ and $w_j = 0$ for all other nonpivot columns A_j. Then determine the unique multipliers w_j for the pivot columns of A'_j to solve $A'w = O$. So the dimension of the nullspace equals the number of nonpivot columns.

4. Suppose the zero rows of A' are precisely the last k rows of A'. Then the last k rows of M form a basis for the left nullspace of A. In particular, the dimension of the left nullspace equals the number of nonpivot rows.

As an immediate consequence we have:

\textbf{Theorem 5.2}

1. \textit{The dimension of the row space equals the dimension of the column space. This number is also called the rank of A.}

2. \textit{The dimension of the column space plus the dimension of the nullspace equals the number of columns.}

3. \textit{The dimension of the row space plus the dimension of the left nullspace equals the number of rows.}
5.3 Graphs and Digraphs

Definition 5.3 A directed graph (digraph) \(G = (V, E) \) is a finite set \(V = V(G) \) of vertices and a finite set \(E = E(G) \) of edges. Associated with each edge \(e \) is an ordered pair \((u, v)\) of (usually distinct) vertices. We way \(u \) is the tail of \(e \), \(v \) is the head of \(e \), and \(u \) and \(v \) are the endpoints of \(e \). If \(u \) and \(v \) are distinct, we may sometimes write \(e = uv \) if there is no other edge having the same tail as \(e \) and the same head as \(e \). If \(u = v \) then \(e \) is called a loop.

In this course, unless otherwise indicated, we will consider only digraphs without loops. We can represent a directed graph by a drawing, using points for vertices and arrows for edges, with the arrow pointing from the tail to the head.

If each edge is associated with an unordered (instead of ordered) pair of endpoints, then we say that we have an (undirected) graph.

Definition 5.4 A subgraph of a digraph \(G = (V, E) \) is a digraph \(G' = (V', E') \) where \(V' \subseteq V \), \(E' \subseteq E \).

A path in a digraph is an alternating sequence \(v_0, e_1, v_1, e_2, v_2, \ldots, e_k, v_k \) of vertices and edges, where the vertices \(v_i \) are all distinct, the edges \(e_i \) are all distinct, and \(v_{i-1} \) and \(v_i \) are the two endpoints of \(e_i \) (either one of \(v_i, v_j \) could be the tail, the other being the head). If you have an alternating sequence in which \(k \geq 1 \), \(v_0 = v_k \) and otherwise the vertices and edges are distinct, the sequence is called a cycle. We also often identify paths and cycles with just the sets of edges in them.

Two vertices are connected if there is a path from one to the other. The set of all vertices connected to a given vertex is a component of the digraph. A digraph is connected if it has only one component.

A forest is a graph containing no cycle (i.e., acyclic). A tree is a connected forest. A spanning forest of a digraph is a subgraph that is a forest containing every vertex of the digraph. A connected spanning forest of a digraph is a spanning tree.

A twig of a digraph is an edge that is not a loop and has an endpoint that is not the endpoint of any other edge in the digraph.

Theorem 5.5 Forests with at least one edge have twigs.

Proof. Assume the contrary. Choose any vertex in the forest that is the endpoint of some edge in the forest. Begin making a path. If every vertex encountered is new, at every new vertex there will be another vertex having that vertex as an endpoint that can be used to continue the path. Since there is only a finite number of vertices, this cannot continue forever. So at some point a vertex will be encountered for a second time. But then a cycle will be detected, which is also impossible. \(\square \)
Definition 5.6 Associated with a digraph having no loops is the vertex-edge incidence matrix A. Rows are indexed by vertices, columns by edges. The entry in row v column e is -1 if v is the tail of e, $+1$ if v is the head of e, and zero otherwise. (Note that other texts may interchange -1 and 1 in the definition.)

Theorem 5.7 For a digraph, the dimension of the left nullspace of A equals the number of components of G.

Proof. An element of the left nullspace is an assignment of numbers y_v to vertices v such that for every edge $e = uv$, $y_v - y_u = 0$; i.e., $y_v = y_u$. By connectivity, the same number must be assigned to every vertex in a given component. But different components may have vertices with different numbers.

For a digraph, an element of the nullspace of A corresponds to an assignment of numbers x_e to edges $e \in E(G)$ such that for every vertex v,

$$\sum_{e \in \delta^-(v)} x_e - \sum_{e \in \delta^+(v)} x_e = 0.$$

We are using the notation $\delta^+(v)$ to denote the set of edges whose tails are v (the set of edges leaving v), and $\delta^-(v)$ to denote the set of edges whose heads are v (the set of edges entering v). That is to say, for every vertex v, the sum of the numbers on edges entering v equals the sum of the numbers on edges leaving v. The above equations are known as the flow-conservation equations because by interpreting the numbers on the edges as flows, the equations state that what flows in at each vertex must flow out. (Regard negative flow as positive flow in the opposite direction.)

Theorem 5.8 If a subset of edges contains a cycle, then the corresponding subset of columns of A is dependent.

Proof. Trace the cycle in some direction, assigning $+1$ to edges traversed in the forward direction, and -1 to edges traversed in the reverse direction.

Theorem 5.9 If a subset S of columns of A is dependent, then the corresponding subset of edges contains a cycle.

Proof. Let x be a nonzero solution to $Ax = O$. Without loss of generality assume that $x_e \neq 0$ precisely when $e \in S$. From the flow-conservations equations we can deduce that there can be no twig in the subgraph of G determined by the edges in S. So the set of edges of S cannot be a forest, and hence contains a cycle.
Exercise 5.10 Prove that the following are equivalent for a digraph G with at least one edge. Try using some of the properties of the dimensions of the vector spaces associated with the vertex-edge incidence matrix A of G.

1. G is a tree.

2. G is minimally connected; i.e., G is connected, but no subgraph with the same vertex set and fewer edges is connected.

3. G is maximally acyclic; i.e, G is acyclic, but no supergraph with the same vertex set and more edges is acyclic.

4. $|V(G)| = |E(G)| + 1$ and G is connected.

5. $|V(G)| = |E(G)| + 1$ and G is acyclic.

Exercise 5.11 Let A be the vertex-edge incidence matrix of a digraph G with at least one edge. Let M be any square submatrix of A, determined by selecting any sets of equal numbers of rows and columns of A, not necessarily adjacent. Prove that the determinant of M is 0, 1, or -1. Suggestion: Recall how to calculate a determinant by expansion along a column.

5.4 Systems of Equations

Definition 5.12 Let A be an $m \times n$ matrix. For a subset $B \subseteq \{1, \ldots, n\}$ we let A_B denote the submatrix of A consisting only of those columns indexed by B. Similarly, if $x \in \mathbb{R}^n$ we let x_B denote the subvector of x consisting only of those components of x indexed by B.

Given an $m \times n$ matrix A and a vector $b \in \mathbb{R}^m$ we can determine whether or not b is in the column space of A and, if so, find a particular solution \bar{x} to $Ax = b$ using Gaussian elimination. The solution \bar{x} will satisfy $A_B\bar{x}_B = b$ and $\bar{x}_N = 0$, where $N = \{1, \ldots, n\} \setminus B$. We can also find a basis for $\{\bar{w}_1, \ldots, \bar{w}_p\}$ for the nullspace of A. Then the complete set of solutions to $Ax = b$ is given by

$$\{\bar{x} + t_1\bar{w}_1 + \cdots + t_p\bar{w}_p : t_1, \ldots, t_p \in \mathbb{R}\}.$$

Actually, we can do the above for any set B of indices of columns forming a basis for the column space of A. Such a solution \bar{x} is called the basic solution associated with B, and the vectors $\bar{w}_1, \ldots, \bar{w}_p$ are called the basic directions associated with B.

17
Example 5.13 Consider the system $Ax = b$ below:

$$
\begin{bmatrix}
1 & 2 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
2 & 1 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix}
=
\begin{bmatrix}
120 \\
70 \\
100
\end{bmatrix}.
$$

Here are some choices for B and the corresponding basic solutions and basic directions, each of which can easily be computed by hand in this small example:

1. $B = \{3, 4, 5\}$, $\bar{x} = (0, 0, 120, 70, 100)$, $\bar{w}^1 = (1, 0, -1, -1, -2)$, $\bar{w}^2 = (0, 1, -2, -1, -1)$.

2. $B = \{2, 3, 5\}$, $\bar{x} = (0, 70, -20, 0, 30)$, $\bar{w}^1 = (1, -1, 1, 0, -1)$, $\bar{w}^2 = (0, -1, 2, 1, 1)$.

3. $B = \{1, 2, 3\}$, $\bar{x} = (30, 40, 10, 0, 0)$, $\bar{w}^1 = (1, -2, 3, 1, 0)$, $\bar{w}^2 = (-1, 1, -1, 0, 1)$.

4. $B = \{1, 2, 4\}$, $\bar{x} = \left(\frac{80}{3}, \frac{140}{3}, 0, -\frac{10}{3}, 0\right)$, $\bar{w}^1 = \left(\frac{1}{3}, -\frac{2}{3}, 1, \frac{1}{3}, 0\right)$, $\bar{w}^2 = \left(-\frac{2}{3}, \frac{1}{3}, 0, \frac{1}{3}, 1\right)$.

5. $B = \{1, 2, 5\}$, $\bar{x} = (20, 50, 0, 0, 10)$, $\bar{w}^1 = (1, -1, 1, 0, -1)$, $\bar{w}^2 = (-2, 1, 0, 1, 3)$.

So, for example, from $B = \{1, 2, 5\}$ we obtain the complete set of solutions

$$
\begin{bmatrix}
20 \\
50 \\
0 \\
0 \\
10
\end{bmatrix} + t_1 \begin{bmatrix}
1 \\
-1 \\
1 \\
0 \\
-1
\end{bmatrix} + t_2 \begin{bmatrix}
-2 \\
1 \\
0 \\
1 \\
3
\end{bmatrix} : t_1, t_2 \in \mathbb{R}.
$$

In the special case that the matrix A has full row rank (the rows are linear independent), then for every choice of indices B for the column space, the matrix A_B will be square and invertible. In this case we can derive formulas for \bar{x} and the vectors \bar{w}^s.

Since $A_B\bar{x}_B = b$, we have

$$
\bar{x}_B = A_B^{-1}b
$$

Since each basic direction \bar{w} is obtained by setting $\bar{w}_s = 1$ for some $s \in N$, $\bar{w}_j = 0$ for $j \in N \setminus \{s\}$, and then solving $A\bar{w} = O$, we have $A_B\bar{w}_B + A_s = O$ so

$$
\bar{w}_B = -A_B^{-1}A_s
$$

$$
\bar{w}_s = 1
$$

$$
\bar{w}_j = 0, \ j \in N \setminus \{s\}
$$
5.5 Solving Linear Programs

In this section we finally begin to discuss how to solve linear programs. Let’s start with a linear program in standard form

$$\max z = \hat{c}^T \hat{x}$$

$$\text{s.t. } \hat{A} \hat{x} \leq b$$

$$\hat{x} \geq O$$

where \hat{A} is an $m \times n$ matrix.

In summation notation, (\hat{P}) is of the form

$$\max z = \sum_{j=1}^{n} c_j x_j$$

$$\text{s.t. } \sum_{j=1}^{n} a_{ij} x_j \leq b_i, \quad i = 1, \ldots, m$$

$$x_j \geq 0, \quad j = 1, \ldots, n$$

The first step will be to turn this system into a system of equations by introducing m nonnegative slack variables, one for each inequality in $\hat{A} \hat{x} \leq b$:

$$\max z = \sum_{j=1}^{n} c_j x_j$$

$$\text{s.t. } \left(\sum_{j=1}^{n} a_{ij} x_j \right) + x_{n+i} = b_i, \quad i = 1, \ldots, m$$

$$x_j \geq 0, \quad j = 1, \ldots, n + m$$

Now we have a problem of the form

$$\max c^T x$$

$$\text{s.t. } Ax = b$$

$$x \geq O$$

where $x = (\hat{x}, x_{n+1}, \ldots, x_{n+m})$, $c = (\hat{c}, 0, \ldots, 0)$, and $A = [\hat{A} | I]$. In particular, the rows of A are linearly independent (A has full row rank).

Example 5.14 With the addition of slack variables, the GGMC problem becomes

$$\max z = 5x_1 + 4x_2$$

$$\text{s.t. } x_1 + 2x_2 + x_3 = 120$$

$$x_1 + x_2 + x_4 = 70$$

$$2x_1 + x_2 + x_5 = 100$$

$$x_1, \ldots, x_5 \geq 0$$
We are going to solve this problem by moving through a sequence of basic solutions by following a sequence of basic directions.

1. Begin with the easy basis \(\{3, 4, 5\} \). Compute the associated basic solution and basic directions: \(\bar{x} = (0, 0, 120, 70, 100) \), \(\bar{w}^1 = (1, 0, -1, -1, -2) \), \(\bar{w}^2 = (0, 1, -2, -1, -1) \). Notice that \(\bar{x} \) is a nonnegative basic solution. We call such solutions basic feasible solutions, and such a basis a (primal) feasible basis. Using the objective function, determine the values of each of these: \(c^T \bar{x} = $0 \), \(c^T \bar{w}^1 = $5 \), \(c^T \bar{w}^2 = $4 \). So if we start with the solution \(\bar{x} \) and move in the direction of \(\bar{w}^1 \) along the ray \(\bar{x} + t\bar{w}^1 = (0 + t, 0, 120 - t, 70 - t, 100 - 2t) \), we gain $5 for each unit increase in \(t \). How high can we make \(t \) without having any of our variables become negative? We clearly need to be only concerned with the variables that are dropping in value, and in this case we see that \(t \) must be the minimum of \(\{120, 70, \frac{100}{2}\} \); namely, 50.

Setting \(t = 50 \) we get the new solution \((50, 0, 70, 20, 0) \). So we went from a solution involving basis \(\{3, 4, 5\} \), used the linear relation among columns \(\{1, 3, 4, 5\} \), and noticed that dropping column 5 leaves a new basis \(\{1, 3, 4\} \) with associated basic feasible solution \((50, 0, 70, 20, 0) \). At this point it would be wise to take a second look at Exercise 2.14(3).

2. The basis \(\{1, 3, 4\} \) has the associated basic feasible solution and basic directions: \(\bar{x} = (50, 0, 70, 20, 0) \) with value $250, \(\bar{w}^1 = (-\frac{1}{2}, 1, -\frac{3}{2}, -\frac{1}{2}, 0) \) with value $\frac{3}{2}$, \(\bar{w}^2 = (-\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, 1) \) with value $-\frac{5}{2}$. If we move from \(\bar{x} \) in the direction of \(\bar{w}^1 \) along the ray \(\bar{x} + t\bar{w}^1 = (50 - \frac{1}{2}t, 0 + t, 70 - \frac{3}{2}t, 20 - \frac{1}{2}t, 0) \), we gain $\frac{3}{2}$ for each unit increase in \(t \). How high can we make \(t \) without having any of our variables become negative? In this case it is the minimum of \(\{50/\frac{1}{2}, 70/\frac{3}{2}, 20/\frac{1}{2}\} \); namely, 40.

Setting \(t = 40 \) we get the new solution \((30, 40, 10, 0, 0) \). So we went from a solution involving basis \(\{1, 3, 4\} \), used the linear relation among columns \(\{1, 2, 3, 4\} \), and noticed that dropping column 4 leaves a new linearly independent set of columns \(\{1, 2, 3\} \) with associated basic feasible solution \((30, 40, 10, 0, 0) \).

3. The basis \(\{1, 2, 3\} \) has the associated basic feasible solution and basic directions: \(\bar{x} = (30, 40, 10, 0, 0) \) with value $310, \(\bar{w}^1 = (1, -2, 3, 1, 0) \) with value -3, \(\bar{w}^2 = (-1, 1, -1, 0, 1) \) with value -1. If we move from \(\bar{x} \) in either direction \(\bar{w}^1 \) or \(\bar{w}^2 \) or any nonnegative combination of these, we cannot get a higher value. On the other hand, since every solution to the set of equations is of the form \(\bar{x} + t_1\bar{w}^1 + t_2\bar{w}^2 \) and we require nonnegative variables, we cannot let \(t_1 \) become negative without making \(x_4 \) negative, and we cannot let \(t_2 \) become negative without making \(x_5 \) negative. So we are
restricted to considering only nonnegative t_1, t_2. Therefore there is no solution with higher value than the one we have. □

This gives an idea of the simplex method to solve linear programs. If you have a basis B with an associated basic feasible solution, determine the basic directions and their values. If no value is positive, you have arrived at an optimal solution. Otherwise move in the direction of one of the basic directions with positive value until some variable is forced to zero. If no variable decreases to zero, then the basic direction \overline{w} is nonnegative. Such a basic direction is called a basic feasible direction. Then you have found a ray of feasible solutions with ever-increasing objective function value; hence the linear program is unbounded. If, on the other hand, some variable decreases to zero, drop that column from the basis and add the nonbasic column associated with the basic direction.

There are still some details to be worked out, including how to make choices to insure that the algorithm will terminate, and how to get a basis with a basic feasible solution in the first place.

5.6 The Revised Simplex Method

Another question has to do with the computations involved. Let us suppose that our matrix A has full row rank. Given a basis B, we already have formulas for the basic solution and the basic directions. Let’s think about the costs of the basic directions. Suppose we have basic direction \overline{x} associated with basis B and nonbasic column s. Recall that $\overline{w}_B = -A_B^{-1}A_s$, $\overline{w}_s = 1$, and $\overline{w}_j = 0$ otherwise. So its cost is $c^T \overline{w} = c_s \overline{w}_s + c_B^T \overline{w}_B = c_s - c_B^T A_B^{-1} A_s$.

Define $\overline{y}^T = c_B^T A^{-1}$. Thus \overline{y} is the unique solution to the equation $y^T A_B = c_B^T$. Then the cost of \overline{w} becomes $c_s - \overline{y}^T A_s$. By computing \overline{y} first, we can screen our possible directions to determine if any have positive value. If we find that there is a basic direction with positive value, we can then compute it and use it to move to another basic feasible solution.

The general procedure to make a step (also known as a pivot) in the revised simplex method can be described as follows:

At some stage in the simplex method we have a feasible basis B and an associated basic feasible solution \overline{x}. To get $\overline{y}^T = c_B^T A_B^{-1}$, we solve $y^T A_B = c_B^T$. Then we can calculate $c_N = c_N^T - \overline{y}^T A_N$. These numbers are known as the reduced costs of the nonbasic variables. If $\overline{c} \leq O$, then \overline{x} is optimal. If not, then $\overline{c}_s > 0$ for some s. Find \overline{w} by solving $A_B \overline{w}_B = -A_s$, and setting $\overline{w}_s = 1$ and $\overline{w}_j = 0$ otherwise. If $\overline{w} \geq O$ then (P) is unbounded. Otherwise find the largest value of t for which $\overline{x} + t \overline{w}$ remains nonnegative. Calculate the new basic feasible solution with this value of t. Suppose the previously basic variable x_r drops to zero. Change B by dropping r and including s.

Example 5.15 Solving GGMC using the revised simplex method.
1. Begin with the basis $B = \{3, 4, 5\}$ and associated basic feasible solution $\bar{x} = (0, 0, 120, 70, 100)$.

Our starting basis is $(3, 4, 5)$, So

$$A_B = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Find \bar{y} by solving $y^T A_B = c_B^T$:

$$\begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus $\bar{y} = (0, 0, 0)^T$.

Calculate $c_N^T = c_N^T - \bar{y}^T A_N$.

$$\begin{bmatrix} c_1 & c_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix}$$

Since 5 is positive we can choose the basic direction \bar{w} associated with column $s = 1$; i.e., x_1 will be the entering variable. Set $\bar{w}_1 = 1$ and $\bar{w}_2 = 0$. Solve $A_B \bar{w}_B = -A_s$:

$$\begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} w_3 \\ w_4 \\ w_5 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -2 \end{bmatrix}$$

Thus $\bar{w} = (1, 0, -1, -1, -2)$.
To find the new solution, write $\hat{x} = \bar{x} + t\bar{w}$:

$$
\begin{bmatrix}
\hat{x}_1 \\
\hat{x}_2 \\
\hat{x}_3 \\
\hat{x}_4 \\
\hat{x}_5
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
120 \\
70 \\
100
\end{bmatrix}
+ t
\begin{bmatrix}
1 \\
0 \\
-1 \\
-1 \\
-2
\end{bmatrix}
$$

Therefore $t = 50$, x_5 is the leaving variable, $\{1, 3, 4\}$ is the new basis, $\bar{x} = (50, 0, 70, 20, 0)$ is the new basic feasible solution, and

$$
B =
\begin{bmatrix}
1 & 3 & 4 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
2 & 0 & 0
\end{bmatrix}
$$

is the new basis matrix A_B.

2. Find \bar{y} by solving $y^T A_B = c_B^T$:

$$
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix}
\begin{bmatrix}
1 & 3 & 4 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
2 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 3 & 4 \\
5 & 0 & 0
\end{bmatrix}
$$

Thus $\bar{y} = (0, 0, 2.5)^T$.

Calculate $\bar{c}_N^T = c_N - \bar{y}^T A_N$.

$$
\begin{bmatrix}
\bar{c}_2 \\
\bar{c}_5
\end{bmatrix}
=
\begin{bmatrix}
2 & 5 \\
4 & 0
\end{bmatrix}
-
\begin{bmatrix}
0 & 0 & 2.5 \\
0 & 1 & 1
\end{bmatrix}
=
\begin{bmatrix}
2 & 5 \\
1.5 & -2.5
\end{bmatrix}
$$

Since 1.5 is positive we can choose the basic direction \bar{w} associated with column $s = 2$; i.e., x_2 will be the entering variable. Set $\bar{w}_2 = 1$ and $\bar{w}_5 = 0$. Solve $A_B w_B = -A_4$:

$$
\begin{bmatrix}
1 & 3 & 4 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
2 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_3 \\
w_4
\end{bmatrix}
=
\begin{bmatrix}
-2 \\
-1 \\
-1
\end{bmatrix}
$$
Thus \(\bar{w} = (-0.5, 1, -1.5, -0.5, 0) \).

To find the new solution, write \(\hat{x} = \bar{x} + t \bar{w} \):

\[
\begin{bmatrix}
\hat{x}_1 \\
\hat{x}_2 \\
\hat{x}_3 \\
\hat{x}_4 \\
\hat{x}_5 \\
\end{bmatrix} =
\begin{bmatrix}
50 \\
0 \\
70 \\
20 \\
0 \\
\end{bmatrix} + t
\begin{bmatrix}
-0.5 \\
1 \\
-1.5 \\
-0.5 \\
0 \\
\end{bmatrix}
\]

Therefore \(t = 40 \), \(x_4 \) is the leaving variable, \(\{1,2,3\} \) is the new basis, \(\bar{x} = (30, 40, 10, 0, 0) \) is the new basic feasible solution, and

\[
B =
\begin{bmatrix}
1 & 2 & 3 \\
1 & 2 & 1 \\
1 & 1 & 0 \\
2 & 1 & 0 \\
\end{bmatrix}
\]

is the new basis matrix \(A_B \).

3. Find \(\bar{y} \) by solving \(y^T A_B = c^T_B \):

\[
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
\end{bmatrix} \begin{bmatrix}
1 & 2 & 3 \\
1 & 2 & 1 \\
1 & 1 & 0 \\
2 & 1 & 0 \\
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
5 & 4 & 0 \\
\end{bmatrix}
\]

Thus \(\bar{y} = (0, 3, 1)^T \).

Calculate \(\bar{c}_N = c_N - \bar{y}^T A_N \).

\[
\begin{bmatrix}
\bar{c}_4 \\
\bar{c}_5 \\
\end{bmatrix} =
\begin{bmatrix}
4 & 5 \\
0 & 0 \\
\end{bmatrix} -
\begin{bmatrix}
0 & 3 & 1 \\
1 & 0 \\
0 & 1 \\
\end{bmatrix} =
\begin{bmatrix}
4 & 5 \\
-3 & -1 \\
\end{bmatrix}
\]

Since \(\bar{c} \) is nonpositive, our current solution \(\bar{x} \) is optimal.

\(\square \)
6 Theorems of the Alternatives

6.1 Systems of Equations

Let's start with a system of linear equations:

\[Ax = b. \]

Suppose you wish to determine whether this system is feasible or not. One reasonable approach is to use Gaussian elimination. If the system has a solution, you can find a particular one, \(\pi \). (You remember how to do this: Use elementary row operations to put the system in row echelon form, select arbitrary values for the independent variables and use back substitution to solve for the dependent variables.) Once you have a feasible \(\pi \) (no matter how you found it), it is straightforward to convince someone else that the system is feasible by verifying that \(A\pi = b \).

If the system is infeasible, Gaussian elimination will detect this also. For example, consider the system

\[
\begin{align*}
\quad x_1 + x_2 + x_3 + x_4 &= 1 \\
2x_1 - x_2 + 3x_3 &= -1 \\
8x_1 + 2x_2 + 10x_3 + 4x_4 &= 0
\end{align*}
\]

which in matrix form looks like

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
2 & -1 & 3 & 0 & -1 \\
8 & 2 & 10 & 4 & 0
\end{bmatrix}
\]

Perform elementary row operations to arrive at a system in row echelon form:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -2 & 1 \\
0 & -2 & 1 & -8 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & -3 & 1 & -2 & -3 \\
0 & 0 & 0 & 0 & -2
\end{bmatrix}
\]

which implies

\[
\begin{bmatrix}
1 & 0 & 0 & -2 & 1 & 0 \\
-4 & -2 & 1 & 2 & -1 & 3 \\
8 & 2 & 10 & 4 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
= \begin{bmatrix}
0 & -3 & 1 & -2 & -3 \\
0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Immediately it is evident that the original system is infeasible, since the resulting equivalent system includes the equation \(0x_1 + 0x_2 + 0x_3 + 0x_4 = -2 \).
This equation comes from multiplying the matrix form of the original system by the third row of the matrix encoding the row operations: \([-4, -2, 1]\). This vector satisfies

\[
\begin{bmatrix} -4 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 3 \\ 8 & 2 & 10 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 \end{bmatrix}
\]

and

\[
\begin{bmatrix} -4 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = -2.
\]

In matrix form, we have found a vector \(\overline{y}\) such that \(\overline{y}^T A = O\) and \(\overline{y}^T b \neq 0\). Gaussian elimination will always produce such a vector if the original system is infeasible. Once you have such a \(\overline{y}\) (regardless of how you found it), it is easy to convince someone else that the system is infeasible.

Of course, if the system is feasible, then such a vector \(\overline{y}\) cannot exist, because otherwise there would also be a feasible \(\overline{x}\), and we would have

\[
0 = O^T \overline{x} = (\overline{y}^T A) \overline{x} = \overline{y}^T (A \overline{x}) = \overline{y}^T b \neq 0,
\]

which is impossible. (Be sure you can justify each equation and inequality in the above chain.) We have established our first Theorem of the Alternatives:

Theorem 6.1 Either the system

\[
(I) \quad Ax = b
\]

has a solution, or the system

\[
(II) \quad y^T A = O^T \\
y^T b \neq 0
\]

has a solution, but not both.

As a consequence of this theorem, the following question has a “good characterization”: Is the system \((I)\) feasible? I will not give an exact definition of this concept, but roughly speaking it means that whether the answer is yes or no, there exists a “short” proof. In this case, if the answer is yes, we can prove it by exhibiting any particular solution to \((I)\). And if the answer is no, we can prove it by exhibiting any particular solution to \((II)\).

Geometrically, this theorem states that precisely one of the alternatives occurs:

1. The vector \(b\) is in the column space of \(A\).

2. There is a vector \(y\) orthogonal to each column of \(A\) (and hence to the entire column space of \(A\)) but not orthogonal to \(b\).
6.2 Fourier-Motzkin Elimination — A Starting Example

Now let us suppose we are given a system of linear inequalities

\[Ax \leq b \]

and we wish to determine whether or not the system is feasible. If it is feasible, we want to find a particular feasible vector \(x \); if it is not feasible, we want hard evidence!

It turns out that there is a kind of analog to Gaussian elimination that works for systems of linear inequalities: Fourier-Motzkin elimination. We will first illustrate this with an example:

\[
\begin{align*}
 x_1 - 2x_2 &\leq -2 \\
 x_1 + x_2 &\leq 3 \\
 x_1 &\leq 2 \\
 -2x_1 + x_2 &\leq 0 \\
 -x_1 &\leq -1 \\
 8x_2 &\leq 15
\end{align*}
\]

\((I)\)

Our goal is to derive a second system \((II)\) of linear inequalities with the following properties:

1. It has one fewer variable.
2. It is feasible if and only if the original system \((I)\) is feasible.
3. A feasible solution to \((I)\) can be derived from a feasible solution to \((II)\).

(Do you see why Gaussian elimination does the same thing for systems of linear equations?)

Here is how it works. Let’s eliminate the variable \(x_1 \). Partition the inequalities in \((I)\) into three groups, \((I_-)\), \((I_+)\), and \((I_0)\), according as the coefficient of \(x_1 \) is negative, positive, or zero, respectively.

\[
\begin{align*}
 (I_-) &\quad -2x_1 + x_2 \leq 0 \\
 &\quad -x_1 \leq -1 \\
 (I_+) &\quad x_1 - 2x_2 \leq -2 \\
 &\quad x_1 + x_2 \leq 3 \\
 (I_0) &\quad 8x_2 \leq 15 \\
 &\quad x_1 \leq 2
\end{align*}
\]

For each pair of inequalities, one from \((I_-)\) and one from \((I_+)\), multiply by positive numbers and add to eliminate \(x_1 \). For example, using the first inequality in each group,

\[
\begin{align*}
 \left(\frac{1}{2}\right)(-2x_1 + x_2 \leq 0) + (1)(x_1 - 2x_2 \leq -2) \\
 \frac{-3}{2}x_2 \leq -2
\end{align*}
\]

27
System \((II)\) results from doing this for all such pairs, and then also including the inequalities in \((I_0)\):

\[
\begin{align*}
\frac{3}{2}x_2 &\leq -2 \\
\frac{3}{2}x_2 &\leq 3 \\
\frac{1}{2}x_2 &\leq 2 \\
\frac{-2}{x_2} &\leq -3 \\
x_2 &\leq 2 \\
0x_2 &\leq 1 \\
8x_2 &\leq 15
\end{align*}
\]

\((II)\)

The derivation of \((II)\) from \((I)\) can also be represented in matrix form. Here is the original system:

\[
\begin{bmatrix}
1 & -2 & -2 \\
1 & 1 & 3 \\
1 & 0 & 2 \\
-2 & 1 & 0 \\
-1 & 0 & -1 \\
0 & 8 & 15
\end{bmatrix}
\]

Obtain the new system by multiplying on the left by the matrix that constructs the desired nonnegative combinations of the original inequalities:

\[
\begin{bmatrix}
1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\
0 & 1 & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & \frac{1}{2} & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & -2 & -2 \\
1 & 1 & 3 \\
1 & 0 & 2 \\
-2 & 1 & 0 \\
-1 & 0 & -1 \\
0 & 8 & 15
\end{bmatrix}
\]

To see why the new system has the desired properties, let’s break down this process a bit. First scale each inequality in the first two groups by positive numbers so that each coefficient
of \(x_1 \) in (\(I_- \)) is \(-1\) and each coefficient of \(x_1 \) in (\(I_+ \)) is \(+1\).

\[
(I_-) \quad -x_1 + \frac{1}{2}x_2 \leq 0 \\
\quad \quad \quad \quad \quad -x_1 \leq -1
\]

\[
(I_+) \quad x_1 - 2x_2 \leq -2 \\
\quad \quad \quad \quad \quad x_1 + x_2 \leq 3 \\
\quad \quad \quad \quad \quad x_1 \leq 2
\]

\[
(I_0) \quad 8x_2 \leq 15
\]

Isolate the variable \(x_1 \) in each of the inequalities in the first two groups.

\[
(I_-) \quad \frac{1}{2}x_2 \leq x_1 \\
\quad \quad \quad \quad \quad 1 \leq x_1
\]

\[
(I_+) \quad x_1 \leq 2x_2 - 2 \\
\quad \quad \quad \quad \quad x_1 \leq -x_2 + 3 \\
\quad \quad \quad \quad \quad x_1 \leq 2
\]

\[
(I_0) \quad 8x_2 \leq 15
\]

For each pair of inequalities, one from (\(I_- \)) and one from (\(I_+ \)), create a new inequality by “sandwiching” and then eliminating \(x_1 \). Keep the inequalities in (\(I_0 \)).

(\(IIa \))

\[
\left\{ \begin{array}{l}
\left\{ \begin{array}{l}
\frac{1}{2}x_2 \\
1
\end{array} \right. \\
8x_2
\end{array} \right\} \leq x_1 \leq \left\{ \begin{array}{l}
2x_2 - 2 \\
-x_2 + 3 \\
2 \\
15
\end{array} \right.
\]

\[\rightarrow (IIb)\]

\[
\left\{ \begin{array}{l}
\frac{1}{2}x_2 \leq x_1 \leq 2x_2 - 2 \\
\frac{1}{2}x_2 \leq x_1 \leq -x_2 + 3 \\
\frac{1}{2}x_2 \leq x_1 \leq 2 \\
1 \leq x_1 \leq 2x_2 - 2 \\
1 \leq x_1 \leq -x_2 + 3 \\
1 \leq x_1 \leq 2 \\
8x_2 \leq 15
\end{array} \right.
\]

(\(IIc \))

\[\rightarrow (II)\]

\[
\left\{ \begin{array}{l}
\frac{1}{2}x_2 \leq 2x_2 - 2 \\
\frac{1}{2}x_2 \leq -x_2 + 3 \\
\frac{1}{2}x_2 \leq 2 \\
1 \leq 2x_2 - 2 \\
1 \leq -x_2 + 3 \\
1 \leq 2 \\
8x_2 \leq 15
\end{array} \right.
\]

Observe that the system (\(II \)) does not involve the variable \(x_1 \). It is also immediate that if (\(I \)) is feasible, then (\(II \)) is also feasible. For the reverse direction, suppose that (\(II \)) is feasible. Set the variables (in this case, \(x_2 \)) equal to any specific feasible values (in this case we choose a feasible value \(\overline{x}_2 \)). From the way the inequalities in (\(II \)) were derived, it is evident that

\[
\max \left\{ \begin{array}{l}
\frac{1}{2}x_2 \\
1
\end{array} \right\} \leq \min \left\{ \begin{array}{l}
2x_2 - 2 \\
-x_2 + 3 \\
2
\end{array} \right\}.
\]
So there exists a specific value \(\overline{x}_1 \) of \(x_1 \) such that

\[
\begin{align*}
\left\{ \frac{1}{2} \overline{x}_2 \right\} & \leq \overline{x}_1 \leq \left\{ \begin{array}{c}
\frac{2\overline{x}_2 - 2}{2} \\
-\overline{x}_2 + 3
\end{array} \right\} \\
8\overline{x}_2 & \leq 15
\end{align*}
\]

We will then have a feasible solution to \((I)\).

6.3 Showing our Example is Feasible

\(\)From this example, we now see how to eliminate one variable (but at the possible considerable expense of increasing the number of inequalities). If we have a solution to the new system, we can determine a value of the eliminated variable to obtain a solution of the original system. If the new system is infeasible, then so is the original system.

\(\)From this we can tackle any system of inequalities: Eliminate all of the variables one by one until a system with no variables remains! Then work backwards to determine feasible values of all of the variables.

In our previous example, we can now eliminate \(x_2 \) from system \((II)\):

\[
\begin{bmatrix}
\frac{2}{3} & \frac{2}{3} & 0 & 0 & 0 & 0 & 0 \\
\frac{2}{3} & 0 & 2 & 0 & 0 & 0 & 0 \\
\frac{2}{3} & 0 & 0 & 0 & 1 & 0 & 0 \\
\frac{2}{3} & 0 & 0 & 0 & 0 & 0 & 1/8 \\
0 & \frac{2}{3} & 0 & 1/2 & 0 & 0 & 0 \\
0 & 0 & 2 & 1/2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1/2 & 1 & 0 & 0 \\
0 & 0 & 0 & 1/2 & 0 & 0 & 1/8 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
0 \\
\frac{3}{2} \\
0 \\
1/2 \\
0 \\
0 \\
0 \\
1/8 \\
0 \\
0
\end{bmatrix}
= \begin{bmatrix}
0 & 2/3 \\
0 & 8/3 \\
0 & 2/3 \\
0 & 13/24 \\
0 & 1/2 \\
0 & 5/2 \\
0 & 1/2 \\
0 & 3/8 \\
0 & 1
\end{bmatrix}.
\]
Each final inequality, such as \(0x_1 + 0x_2 \leq 2/3\), is feasible, since the left-hand side is zero and the right-hand side is nonnegative. Therefore the original system is feasible. To find one specific feasible solution, rewrite \((II)\) as

\[
\{4/3, 3/2\} \leq x_2 \leq \{2, 4, 15/8\}.
\]

We can choose, for example, \(x_2 = 3/2\). Substituting into \((I)\) (or \((IIa)\)), we require

\[
\{3/4, 1\} \leq x_1 \leq \{1, 3/2, 2\}.
\]

So we could choose \(x_1 = 1\), and we have a feasible solution \((1, 3/2)\) to \((I)\).

6.4 An Example of an Infeasible System

Now let’s look at the system:

\[
\begin{align*}
x_1 - 2x_2 & \leq -2 \\
x_1 + x_2 & \leq 3 \\
x_1 & \leq 2 \\
-2x_1 + x_2 & \leq 0 \\
-x_1 & \leq -1 \\
8x_2 & \leq 11
\end{align*}
\]

\(\text{(I)}\)

Multiplying by the appropriate nonnegative matrices to successively eliminate \(x_1\) and \(x_2\), we compute:

\[
\begin{bmatrix}
1 & 0 & 0 & 1/2 & 0 & 0 \\
0 & 1 & 0 & 1/2 & 0 & 0 \\
0 & 0 & 1 & 1/2 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & -2 & -2 \\
1 & 1 & 3 \\
1 & 0 & 2 \\
-2 & 1 & 0 \\
-1 & 0 & -1 \\
0 & 8 & 11
\end{bmatrix}
= \begin{bmatrix}
0 & -3/2 & -2 \\
0 & 3/2 & 3 \\
0 & 1/2 & 2 \\
0 & -2 & -3 \\
0 & 1 & 2 \\
0 & 0 & 1 \\
0 & 8 & 11
\end{bmatrix} \text{(II)}
\]
Since one inequality is $0x_1 + 0x_2 \leq -1/8$, the final system (III) is clearly infeasible. Therefore the original system (I) is also infeasible. We can go directly from (I) to (III) by collecting together the two nonnegative multiplier matrices:

\[
\begin{bmatrix}
\frac{2}{3} & \frac{2}{3} & 0 & 0 & 0 & 0 & 0 \\
\frac{2}{3} & 0 & 2 & 0 & 0 & 0 & 0 \\
\frac{2}{3} & 0 & 0 & 0 & 1 & 0 & 0 \\
\frac{2}{3} & 0 & 0 & 0 & 0 & \frac{1}{8} & 0 \\
0 & \frac{2}{3} & 0 & 1/2 & 0 & 0 & 0 \\
0 & 0 & 2 & 1/2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1/2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{8} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
0 & -3/2 & -2 \\
0 & 3/2 & 3 \\
0 & 1/2 & 2 \\
0 & -2 & -3 \\
0 & 1 & 2 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & \frac{1}{8} \\
0 & 0 & 1 \\
0 & 8 & 11
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & \frac{2}{3} \\
0 & 0 & \frac{8}{3} \\
0 & 0 & \frac{2}{3} \\
0 & 0 & \frac{1}{24} \\
0 & 0 & \frac{1}{2} \\
0 & 0 & \frac{5}{2} \\
0 & 0 & \frac{1}{2} \\
0 & 0 & -\frac{1}{8} \\
0 & 0 & 1
\end{bmatrix}
\text{(III)}
You can check that $M(I) = (III)$. Since M is a product of nonnegative matrices, it will itself be nonnegative. Since the infeasibility is discovered in the eighth inequality of (III), this comes from the eighth row of M, namely, $[1/2, 0, 0, 0, 1/2, 1/8]$. You can now demonstrate directly to anyone that (I) is infeasible using these nonnegative multipliers:

$$0 \begin{pmatrix} x_1 - 2x_2 \leq -2 \\ -(x_1 \leq -1) \\ (8x_2 \leq 11) \end{pmatrix} = 0x_1 + 0x_2 \leq -\frac{1}{8}$$

In particular, we have found a nonnegative vector y such that $y^TA = O^T$ but $y^Tb < 0$.

6.5 Fourier-Motzkin Elimination in General

Often I find that it is easier to understand a general procedure, proof, or theorem from a few good examples. Let’s see if this is the case for you.

We begin with a system of linear inequalities

$$(I) \quad \sum_{j=1}^n a_{ij}x_j \leq b_i, \quad i = 1, \ldots, m.$$

Let’s write this in matrix form as

$$Ax \leq b$$

or

$$A^tx \leq b_i, \quad i = 1, \ldots, m$$

where A^t represents the ith row of A.

Suppose we wish to eliminate the variable x_k. Define

$$I_- = \{ i : a_{ik} < 0 \}$$

$$I_+ = \{ i : a_{ik} > 0 \}$$

$$I_0 = \{ i : a_{ik} = 0 \}$$

33
For each \((p, q) \in I_- \times I_+\), construct the inequality
\[
-\frac{1}{a_{pk}}(A^px \leq b_p) + \frac{1}{a_{qk}}(A^qx \leq b_q).
\]
By this I mean the inequality
\[
\left(-\frac{1}{a_{pk}} A^p + \frac{1}{a_{qk}} A^q\right) x \leq -\frac{1}{a_{pk}} b_p + \frac{1}{a_{qk}} b_q.
\]
(1)

System \((II)\) consists of all such inequalities, together with the original inequalities indexed by the set \(I_0\).

It is clear that if we have a solution \((x_1, \ldots, x_n)\) to \((I)\), then \((x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n)\) satisfies \((II)\). Inequality (1) is equivalent to
\[
\frac{1}{a_{pk}} (b_p - \sum_{j \neq k} a_{pj}x_j) \leq \frac{1}{a_{qk}} (b_q - \sum_{j \neq k} a_{qj}x_j).
\]
As this is satisfied by \((\overline{x}_1, \ldots, \overline{x}_{k-1}, \overline{x}_{k+1}, \ldots, \overline{x}_n)\) for all \((p, q) \in I_- \times I_+\), we conclude that
\[
\max_{p \in I_-} \left\{ \frac{1}{a_{pk}} (b_p - \sum_{j \neq k} a_{pj} \overline{x}_j) \right\} \leq \min_{q \in I_+} \left\{ \frac{1}{a_{qk}} (b_q - \sum_{j \neq k} a_{qj} \overline{x}_j) \right\}.
\]
Choose \(\overline{x}_k\) to be any value between these maximum and minimum values (inclusive). Then for all \((p, q) \in I_- \times I_+\),
\[
\frac{1}{a_{pk}} (b_p - \sum_{j \neq k} a_{pj} \overline{x}_j) \leq \overline{x}_k \leq \frac{1}{a_{qk}} (b_q - \sum_{j \neq k} a_{qj} \overline{x}_j).
\]
Now it is not hard to see that \((\overline{x}_1, \ldots, \overline{x}_{k-1}, \overline{x}_k, \overline{x}_{k+1}, \ldots, \overline{x}_n)\) satisfies all the inequalities in \((I)\). Therefore \((I)\) is feasible if and only if \((II)\) is feasible.

Observe that each inequality in \((II)\) is a nonnegative combination of inequalities in \((I)\), so there is a nonnegative matrix \(M_k\) such that \((II)\) is expressible as \(M_k(Ax \leq b)\). If we start with a system \(Ax \leq b\) and eliminate all variables sequentially via nonnegative matrices \(M_1, \ldots, M_n\), then we will arrive at a system of inequalities of the form \(0 \leq b'_i\), \(i = 1, \ldots, m'\).

This system is expressible as \(M(Ax \leq b)\), where \(M = M_n \cdots M_1\). If no \(b'_i\) is negative, then the final system is feasible and we can work backwards to obtain a feasible solution to the original system. If \(b'_i\) is negative for some \(i\), then let \(\overline{y}^T = M^i\) (the \(i\)th row of \(M\)), and we have a nonnegative vector \(\overline{y}\) such that \(\overline{y}^TA = OT\) and \(\overline{y}^Tb < 0\).

This establishes a Theorem of the Alternatives for linear inequalities:
Theorem 6.2 Either the system

\[(I) \quad Ax \leq b \]

has a solution, or the system

\[y^T A = O^T \]
\[y^T b < 0 \]
\[y \geq O \]

\[(II) \]

has a solution, but not both.

Note that the “not both” part is the easiest to verify. Otherwise, we would have a feasible \(\bar{x} \) and \(\bar{y} \) satisfying

\[0 = O^T \bar{x} = (\bar{y}^T A) \bar{x} = \bar{y}^T (A \bar{x}) \leq \bar{y}^T b < 0, \]

which is impossible.

As a consequence of this theorem, we have a good characterization for the question: Is the system \((I)\) feasible? If the answer is yes, we can prove it by exhibiting any particular solution to \((I)\). If the answer is no, we can prove it by exhibiting any particular solution to \((II)\).

6.6 More Alternatives

There are many Theorems of the Alternatives, and we shall encounter more later. Most of the others can be derived from the one of the previous section and each other. For example,

Theorem 6.3 Either the system

\[(I) \quad Ax \leq b \]
\[x \geq O \]

has a solution, or the system

\[y^T A \geq O^T \]
\[y^T b < 0 \]
\[y \geq O \]

\[(II) \]

has a solution, but not both.

Proof. System \((I)\) is feasible if and only if the following system is feasible:

\[(I') \quad \begin{bmatrix} A \\ -I \end{bmatrix} x \leq \begin{bmatrix} b \\ O \end{bmatrix} \]
System (II) is feasible if and only if the following system is feasible:

\[
\begin{bmatrix}
 y^T & w^T \\
\end{bmatrix}
\begin{bmatrix}
 A \\
 -I \\
\end{bmatrix} = O^T \\
\begin{bmatrix}
 y^T & w^T \\
\end{bmatrix}
\begin{bmatrix}
 b \\
 O \\
\end{bmatrix} < 0 \\
\begin{bmatrix}
 y^T & w^T \\
\end{bmatrix} \geq \begin{bmatrix}
 O^T \\
 O^T \\
\end{bmatrix}
\]

Equivalently,

\[
y^T A - w^T = O^T \\
y^T b < O \\
y, w \geq O
\]

Now apply Theorem 6.2 to the pair (I'), (II').
7 Exercises: Systems of Linear Inequalities

Exercise 7.1 Discuss the consequences of having one or more of I_-, I_+, or I_0 being empty during the process of Fourier-Motzkin elimination. Does this create any problems? □

Exercise 7.2 Fourier-Motzkin elimination shows how we can start with a system of linear inequalities with n variables and obtain a system with $n-1$ variables. Explain why the set of all feasible solutions of the second system is a projection of the set of all feasible solutions of the first system. Consider a few examples where $n = 3$ and explain how you can classify the inequalities into types I_-, I_+, and I_0 geometrically (think about eliminating the third coordinate). Explain geometrically where the new inequalities in the second system are coming from. □

Exercise 7.3 Consider a given system of linear constraints. A subset of these constraints is called irredundant if it describes the same feasible region as the given system and no constraint can be dropped from this subset without increasing the set of feasible solutions.

Find an example of a system $Ax \leq b$ with three variables such that when x_3, say, is eliminated, the resulting system has a larger irredundant subset than the original system. That is to say, the feasible set of the resulting system requires more inequalities to describe than the feasible set of the original system. Hint: Think geometrically. Can you find such an example where the original system has two variables? □

Exercise 7.4 Use Fourier-Motzkin elimination to graph the set of solutions to the following system:

\begin{align*}
+x_1 + x_2 + x_3 & \leq 1 \\
+x_1 + x_2 - x_3 & \leq 1 \\
+x_1 - x_2 + x_3 & \leq 1 \\
+x_1 - x_2 - x_3 & \leq 1 \\
-x_1 + x_2 + x_3 & \leq 1 \\
-x_1 + x_2 - x_3 & \leq 1 \\
-x_1 - x_2 + x_3 & \leq 1 \\
-x_1 - x_2 - x_3 & \leq 1
\end{align*}

What is this geometrical object called? □

Exercise 7.5 Prove the following Theorem of the Alternatives: Either the system

\[Ax \geq b \]
has a solution, or the system
\[y^T A = O^T \]
\[y^T b > 0 \]
\[y \geq O \]
has a solution, but not both. □

Exercise 7.6 Prove the following Theorem of the Alternatives: Either the system
\[Ax \geq b \]
\[x \geq O \]
has a solution, or the system
\[y^T A \leq O^T \]
\[y^T b > 0 \]
\[y \geq O \]
has a solution, but not both. □

Exercise 7.7 Prove or disprove: The system
\[(I) \quad Ax = b \]
has a solution if and only if each of the following systems has a solution:
\[(I') \quad Ax \leq b \quad (I'') \quad Ax \geq b \]
□

Exercise 7.8 (The Farkas Lemma). Derive and prove a Theorem of the Alternatives for the following system:
\[Ax = b \]
\[x \geq O \]
Give a geometric interpretation of this theorem when \(A \) has two rows. When \(A \) has three rows. □

Exercise 7.9 Give geometric interpretations to other Theorems of the Alternatives that we have discussed. □
Exercise 7.10 Derive and prove a Theorem of the Alternatives for the system

\[
\begin{align*}
\sum_{j=1}^{n} a_{ij} x_j & \leq b_i, \quad i \in I_1 \\
\sum_{j=1}^{n} a_{ij} x_j & = b_i, \quad i \in I_2 \\
x_j & \geq 0, \quad j \in J_1 \\
x_j & \text{ unrestricted,} \quad j \in J_2
\end{align*}
\]

where \((I_1, I_2)\) is a partition of \(\{1, \ldots, m\}\) and \((J_1, J_2)\) is a partition of \(\{1, \ldots, n\}\). ☐

Exercise 7.11 Derive and prove a Theorem of the Alternatives for the system

\[Ax < b. \]

☐

Exercise 7.12 Chvátal, problem 16.6. ☐
8 Duality

In this section we will learn that associated with a given linear program is another one, its dual, which provides valuable information about the nature of the original linear program.

8.1 Economic Motivation

The dual linear program can be motivated economically, algebraically, and geometrically. You have already seen an economic motivation in Section 3.3. Recall that GGMC was interested in producing gadgets and gewgaws and wanted to solve the linear program

\[
\begin{align*}
\max z &= 5x_1 + 4x_2 \\
\text{s.t. } x_1 + 2x_2 &\leq 120 \\
x_1 + x_2 &\leq 70 \\
2x_1 + x_2 &\leq 100 \\
x_1, x_2 &\geq 0
\end{align*}
\]

Another company (let’s call it the Knickknack Company, KC) wants to offer money for GGMC’s resources. If they are willing to buy whatever GGMC is willing to sell, what prices should be set so that GGMC will end up selling all of its resources? What is the minimum that KC must spend to accomplish this? Suppose \(y_1, y_2, y_3\) represent the prices for one hour of labor, one unit of wood, and one unit of metal, respectively. The prices must be such that GGMC would not prefer manufacturing any gadgets or gewgaws to selling all of their resources. Hence the prices must satisfy \(y_1 + y_2 + 2y_3 \geq 5\) (the income from selling the resources needed to make one kilogram of gadgets must not be less than the net profit from making one kilogram of gadgets) and \(2y_1 + y_2 + y_3 \geq 4\) (the income from selling the resources needed to make one kilogram of gewgaws must not be less than the net profit from making one kilogram of gewgaws). KC wants to spend as little as possible, so it wishes to minimize the total amount spent: \(120y_1 + 70y_2 + 100y_3\). This results in the linear program

\[
\begin{align*}
\min 120y_1 + 70y_2 + 100y_3 \\
\text{s.t. } y_1 + y_2 + 2y_3 &\geq 5 \\
2y_1 + y_2 + y_3 &\geq 4 \\
y_1, y_2, y_3 &\geq 0
\end{align*}
\]
In matrix form, this is

\[
\begin{align*}
\min & \quad \begin{bmatrix} 120 & 70 & 100 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \\
\text{s.t.} & \quad \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \geq \begin{bmatrix} 5 \\ 4 \end{bmatrix} \\
& \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \geq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\end{align*}
\]

or

\[
\begin{align*}
\min & \quad \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 120 \\ 70 \\ 100 \end{bmatrix} \\
\text{s.t.} & \quad \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} \geq \begin{bmatrix} 5 \\ 4 \end{bmatrix} \\
& \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \geq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\end{align*}
\]

If we represent the GGMC problem and the KC problem in the following compact forms, we see that they are “transposes” of each other.

1 2 120	1 1 2 5
1 1 70	2 1 1 4
2 1 100	120 70 100
5 4 max	min

\[
\begin{align*}
\text{GGMC} & \quad \text{KC}
\end{align*}
\]

8.2 The Dual Linear Program

Given any linear program (P) in standard form

\[
\begin{align*}
\max & \quad c^T x \\
(P) & \text{s.t.} \quad Ax \leq b \\
& \quad x \geq O
\end{align*}
\]
or

\[
\begin{align*}
\text{max} & \sum_{j=1}^{n} c_j x_j \\
\text{s.t.} & \sum_{j=1}^{n} a_{ij} x_j \leq b_i, \ i = 1, \ldots, m \\
& x_j \geq 0, \ j = 1, \ldots, n
\end{align*}
\]

its \textit{dual} is the LP

\[
\begin{align*}
\text{min} & \ y^T b \\
\text{s.t.} & \ y^T A \geq c^T \\
& \ y \geq 0
\end{align*}
\]

or

\[
\begin{align*}
\text{min} & \ b^T y \\
\text{s.t.} & \ A^T y \geq c \\
& \ y \geq 0
\end{align*}
\]

or

\[
\begin{align*}
\text{min} & \ \sum_{i=1}^{m} b_i y_i \\
\text{s.t.} & \ \sum_{i=1}^{m} a_{ij} y_i \geq c_j, \ j = 1, \ldots, n \\
& \ y_i \geq 0, \ i = 1, \ldots, m
\end{align*}
\]

Note the change from maximization to minimization, the change in the direction of the inequalities, the interchange in the roles of objective function coefficients and right-hand sides, the one-to-one correspondence between the inequalities in \(Ax \leq b\) and the variables in \((D)\), and the one-to-one correspondence between the inequalities in \(y^T A \geq c^T\) and the variables in \((P)\). In compact form, the two problems are transposes of each other:

\[
\begin{pmatrix}
A & b \\
c^T & \text{max}
\end{pmatrix} \quad \begin{pmatrix}
A^T & c \\
b^T & \text{min}
\end{pmatrix}
\]

\((P)\) \quad \((D)\)

By the way, the problem \((P)\) is called the \textit{primal} problem. It has been explained to me that George Dantzig’s father made two contributions to the theory of linear programming: the word “primal,” and George Dantzig. Dantzig had already decided to use the word “dual” for the second LP, but needed a term for the original problem.
8.3 The Duality Theorems

One algebraic motivation for the dual is given by the following theorem, which states that any feasible solution for the dual LP provides an upper bound for the value of the primal LP:

Theorem 8.1 (Weak Duality) If \bar{x} is feasible for (P) and \bar{y} is feasible for (D), then $c^T \bar{x} \leq \bar{y}^T b$.

Proof. $c^T \bar{x} \leq (\bar{y}^T A) \bar{x} = \bar{y}^T (A \bar{x}) \leq \bar{y}^T b$. \square

Example 8.2 The prices (1, 2, 3) are feasible for KC’s problem, and yield an objective function value of 560, which is ≥ 310. \square

As an easy corollary, if we are fortunate enough to be given \bar{x} and \bar{y} feasible for (P) and (D), respectively, with equal objective function values, then they are each optimal for their respective problems:

Corollary 8.3 If \bar{x} and \bar{y} are feasible for (P) and (D), respectively, and if $c^T \bar{x} = \bar{y}^T b$, then \bar{x} and \bar{y} are optimal for (P) and (D), respectively.

Proof. Suppose \hat{x} is any feasible solution for (P). Then $c^T \hat{x} \leq \bar{y}^T b = c^T \bar{x}$. Similarly, if \hat{y} is any feasible solution for (D), then $\hat{y}^T b \geq \bar{y}^T b$. \square

Example 8.4 The prices (0, 3, 1) are feasible for KC’s problem, and yield an objective function value of 310. Therefore, (30, 40) is an optimal solution to GGMC’s problem, and (0, 3, 1) is an optimal solution to KC’s problem. \square

Weak Duality also immediately shows that if (P) is unbounded, then (D) is infeasible:

Corollary 8.5 If (P) has unbounded objective function value, then (D) is infeasible. If (D) has unbounded objective function value, then (P) is infeasible.

Proof. Suppose (D) is feasible. Let \bar{y} be a particular feasible solution. Then for all \bar{x} feasible for (P) we have $c^T \bar{x} \leq \bar{y}^T b$. So (P) has bounded objective function value if it is feasible, and therefore cannot be unbounded. The second statement is proved similarly. \square

Suppose (P) is feasible. How can we verify that (P) is unbounded? One way is if we discover a vector \bar{w} such that $A \bar{w} \leq O$, $\bar{w} \geq O$, and $c^T \bar{w} > 0$. To see why this is the case, suppose that \bar{x} is feasible for (P). Then we can add a positive multiple of \bar{w} to \bar{x} to get another feasible solution to (P) with objective function value as high as we wish.

Perhaps surprisingly, the converse is also true, and the proof shows some of the value of Theorems of the Alternatives.
Theorem 8.6 Assume \((P)\) is feasible. Then \((P)\) is unbounded (has unbounded objective function value) if and only if the following system is feasible:

\[
\begin{align*}
Aw & \leq O \\
\begin{bmatrix} c^T \end{bmatrix} w & > 0 \\
w & \geq O
\end{align*}
\]

\((UP)\)

Proof. Suppose \(\pi\) is feasible for \((P)\).

First assume that \(w\) is feasible for \((UP)\) and \(t \geq 0\) is a real number. Then

\[
A(\pi + tw) = A\pi + tAw \leq b + O = b \\
\pi + tw \geq O + tO = O \\
c^T(\pi + tw) = c^T\pi + tc^Tw
\]

Hence \(\pi + tw\) is feasible for \((P)\), and by choosing \(t\) appropriately large, we can make \(c^T(\pi + tw)\) as large as desired since \(c^Tw\) is a positive number.

Conversely, suppose that \((P)\) has unbounded objective function value. Then by Corollary 8.5, \((D)\) is infeasible. That is, the following system has no solution:

\[
\begin{align*}
y^T A & \geq c^T \\
y & \geq O
\end{align*}
\]
or

\[
\begin{align*}
A^Ty & \geq c \\
y & \geq O
\end{align*}
\]

By the Theorem of the Alternatives proved in Exercise 7.6, the following system is feasible:

\[
\begin{align*}
w^T A^T & \leq O^T \\
w^T c & > 0
\end{align*}
\]
or

\[
\begin{align*}
Aw & \leq O \\
c^Tw & > 0 \\
w & \geq O
\end{align*}
\]

Hence \((UP)\) is feasible. \(\square\)

Example 8.7 Consider the LP:

\[
\begin{align*}
\text{max } & 100x_1 + x_2 \\
\text{s.t. } & -2x_1 + 3x_2 \leq 1 \\
& x_1 - 2x_2 \leq 2 \\
& x_1, x_2 \geq 0
\end{align*}
\]
The system (UP) in this case is:

\[-2w_1 + 3w_2 \leq 0 \\
w_1 - 2w_2 \leq 0 \\
100w_1 + w_2 > 0 \\
w_1, w_2 \geq 0\]

One feasible point for (P) is $\mathbf{x} = (1, 0)$. One feasible solution to (UP) is $\mathbf{w} = (2, 1)$. So (P) is unbounded, and we can get points with arbitrarily high objective function values by $\mathbf{x} + t\mathbf{w} = (1 + 2t, t)$, $t \geq 0$, which has objective function value $100 + 201t$. □

There is an analogous theorem for the unboundedness of (D) that is proved in the obviously similar way:

Theorem 8.8 Assume (D) is feasible. Then (D) is unbounded if and only if the following system is feasible:

\[v^T A \geq O^T\]

\[(UD) \quad v^T b < 0\]

\[v \geq O\]

The following highlights an immediate corollary of the proof:

Corollary 8.9 (P) is feasible if and only if (UD) is infeasible. (D) is feasible if and only if (UP) is infeasible.

Let’s summarize what we now know in a slightly different way:

Corollary 8.10 If (P) is infeasible, then either (D) is infeasible or (D) is unbounded. If (D) is infeasible, then either (P) is infeasible or (P) is unbounded.

We now turn to a very important theorem, which is part of the strong duality theorem, that lies at the heart of linear programming. This shows that the bounds on each other’s objective function values that the pair of dual LP’s provides are always tight.

Theorem 8.11 Suppose (P) and (D) are both feasible. Then (P) and (D) each have finite optimal objective function values, and moreover these two values are equal.
Proof. We know by Weak Duality that if \bar{x} and \bar{y} are feasible for (P) and (D), respectively, then $c^T \bar{x} \leq \bar{y}^T b$. In particular, neither (P) nor (D) is unbounded. So it suffices to show that the following system is feasible:

$$
\begin{align*}
Ax & \leq b \\
x & \geq O \\
y^T A & \geq c^T \\
y & \geq O \\
c^T x & \geq y^T b \\
(1)
\end{align*}
$$

For if \bar{x} and \bar{y} are feasible for this system, then by Weak Duality in fact it would have to be the case that $c^T \bar{x} = \bar{y}^T b$.

Let’s rewrite this system in matrix form:

$$
\begin{pmatrix}
A & O \\
O & -A^T \\
-c^T & b^T
\end{pmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\leq
\begin{bmatrix}
b \\
-c \\
0
\end{bmatrix}
$$

$$
x, y \geq O
$$

We will assume that this system is infeasible and derive a contradiction. If it is not feasible, then by Theorem 6.3 the following system has a solution v, w, t:

$$
\begin{pmatrix}
v^T & w^T & t
\end{pmatrix}
\begin{pmatrix}
A & O \\
O & -A^T \\
-c^T & b^T
\end{pmatrix}
\geq
\begin{bmatrix}
O^T & O^T
\end{bmatrix}
$$

$$
\begin{pmatrix}
v^T & w^T & t
\end{pmatrix}
\begin{bmatrix}
b \\
-c \\
0
\end{bmatrix}
< 0
$$

$$
v, w, t \geq O
$$

So we have

$$
\begin{align*}
\bar{v}^T A - t c^T & \geq O^T \\
-\bar{w}^T A^T + t b^T & \geq O^T \\
\bar{v}^T b - \bar{w}^T c & < 0 \\
\bar{v}, \bar{w}, \bar{t} & \geq O
\end{align*}
$$

Case 1: Suppose $\bar{t} = 0$. Then

$$
\begin{align*}
\bar{v}^T A & \geq O^T \\
A \bar{w} & \leq O \\
\bar{v}^T b & < c^T \bar{w} \\
\bar{v}, \bar{w} & \geq O
\end{align*}
$$

46
Now we cannot have both $c^T \overline{w} \leq 0$ and $\overline{v}^T b \geq 0$; otherwise $0 \leq \overline{v}^T b < c^T \overline{w} \leq 0$, which is a contradiction.

Case 1a: Suppose $c^T \overline{w} > 0$. Then \overline{w} is a solution to (UP), so (D) is infeasible by Corollary 8.9, a contradiction.

Case 1b: Suppose $\overline{v}^T b < 0$. Then \overline{v} is a solution to (UD), so (P) is infeasible by Corollary 8.9, a contradiction.

Case 2: Suppose $\overline{t} > 0$. Set $\overline{x} = \overline{w} / \overline{t}$ and $\overline{y} = \overline{v} / \overline{t}$. Then
\[
\begin{align*}
A\overline{x} & \leq b \\
\overline{x} & \geq 0 \\
\overline{y}^T A & \geq c^T \\
\overline{y} & \geq 0 \\
c^T \overline{x} & > \overline{y}^T b
\end{align*}
\]
Hence we have a pair of feasible solutions to (P) and (D), respectively, that violates Weak Duality, a contradiction.

We have now shown that (II) has no solution. Therefore, (I) has a solution. \(\square \)

Corollary 8.12 Suppose (P) has a finite optimal objective function value. Then so does (D), and these two values are equal. Similarly, suppose (D) has a finite optimal objective function value. Then so does (P), and these two values are equal.

Proof. We will prove the first statement only. If (P) has a finite optimal objective function value, then it is feasible, but not unbounded. So (UP) has no solution by Theorem 8.6. Therefore (D) is feasible by Corollary 8.9. Now apply Theorem 8.11. \(\square \)

We summarize our results in the following central theorem, for which we have already done all the hard work:

Theorem 8.13 (Strong Duality) Exactly one of the following holds for the pair (P) and (D):

1. They are both infeasible.
2. One is infeasible and the other is unbounded.
3. They are both feasible and have equal finite optimal objective function values.

Corollary 8.14 If \overline{x} and \overline{y} are feasible for (P) and (D), respectively, then \overline{x} and \overline{y} are optimal for (P) and (D), respectively, if and only if $c^T \overline{x} = \overline{y}^T b$.

Corollary 8.15 Suppose \overline{x} is feasible for (P). Then \overline{x} is optimal for (P) if and only if there exists \overline{y} feasible for (D) such that $c^T \overline{x} = \overline{y}^T b$. Similarly, suppose \overline{y} is feasible for (D). Then \overline{y} is optimal for (D) if and only if there exists \overline{x} feasible for (P) such that $c^T \overline{x} = \overline{y}^T b$.

47
8.4 Comments on Good Characterization

The duality theorems show that the following problems for \((P)\) have “good characterizations.” That is to say, whatever the answer, there exists a “short” proof.

1. Is \((P)\) feasible? If the answer is yes, you can prove it by producing a particular feasible solution to \((P)\). If the answer is no, you can prove it by producing a particular feasible solution to \((UD)\).

2. Assume that you know that \((P)\) is feasible. Is \((P)\) unbounded? If the answer is yes, you can prove it by producing a particular feasible solution to \((UP)\). If the answer is no, you can prove it by producing a particular feasible solution to \((D)\).

3. Assume that \(\pi\) is feasible for \((P)\). Is \(\pi\) optimal for \((P)\)? If the answer is yes, you can prove it by producing a particular feasible solution to \((D)\) with the same objective function value. If the answer is no, you can prove it by producing a particular feasible solution to \((P)\) with higher objective function value.

8.5 Complementary Slackness

Suppose \(\pi\) and \(\bar{y}\) are feasible for \((P)\) and \((D)\), respectively. Under what conditions will \(c^T \pi\) equal \(\bar{y}^T b\)? Recall the chain of inequalities in the proof of Weak Duality:

\[
c^T \pi \leq (\bar{y}^T A) \pi = \bar{y}^T (A \pi) \leq \bar{y}^T b.
\]

Equality occurs if and only if both \(c^T \pi = (\bar{y}^T A) \pi\) and \(\bar{y}^T (A \pi) = \bar{y}^T b\). Equivalently,

\[
\bar{y}^T (b - A \pi) = 0
\]

and

\[
(\bar{y}^T A - c^T) \pi = 0.
\]

In each case, we are requiring that the inner product of two nonnegative vectors (for example, \(\bar{y}\) and \(b - A \pi\)) be zero. The only way this can happen is if these two vectors are never both positive in any common component. This motivates the following definition: Suppose \(\pi \in \mathbb{R}^n\) and \(\bar{y} \in \mathbb{R}^m\). Then \(\pi\) and \(\bar{y}\) satisfy complementary slackness if

1. For all \(j\), either \(\pi_j = 0\) or \(\sum_{i=1}^m a_{ij} \bar{y}_i = c_j\) or both; and

2. For all \(i\), either \(\bar{y}_i = 0\) or \(\sum_{j=1}^n a_{ij} \pi_j = b_i\) or both.
Theorem 8.16 Suppose π and η are feasible for (P) and (D), respectively. Then $c^T\pi = \eta^Tb$ if and only if π, η satisfy complementary slackness.

Corollary 8.17 If π and η are feasible for (P) and (D), respectively, then π and η are optimal for (P) and (D), respectively, if and only if they satisfy complementary slackness.

Corollary 8.18 Suppose π is feasible for (P). Then π is optimal for (P) if and only if there exists η feasible for (D) such that π, η satisfy complementary slackness. Similarly, suppose η is feasible for (D). Then η is optimal for (D) if and only if there exists π feasible for (P) such that π, η satisfy complementary slackness.

Example 8.19 Consider the optimal solution $(30, 40)$ of GGMC’s problem, and the prices $(0, 3, 1)$ for KC’s problem. You can verify that both solutions are feasible for their respective problems, and that they satisfy complementary slackness. But let’s exploit complementary slackness a bit more. Suppose you only had the feasible solution $(30, 40)$ and wanted to verify optimality. Try to find a feasible solution to the dual satisfying complementary slackness. Because the constraint on hours is not satisfied with equality, we must have $y_1 = 0$. Because both x_1 and x_2 are positive, we must have both dual constraints satisfied with equality. This results in the system:

\[
\begin{align*}
y_1 &= 0 \\
y_2 + 2y_3 &= 5 \\
y_2 + y_3 &= 4
\end{align*}
\]

which has the unique solution $(0, 3, 1)$. Fortunately, all values are also nonnegative. Therefore we have a feasible solution to the dual that satisfies complementary slackness. This proves that $(30, 40)$ is optimal and produces a solution to the dual in the bargain. □

8.6 Duals of General LP’s

What if you want a dual to an LP not in standard form? One approach is first to transform it into standard form somehow. Another is to come up with a definition of a general dual that will satisfy all of the duality theorems (weak and strong duality, correspondence between constraints and variables, complementary slackness, etc.). Both approaches are related.

Here are some basic transformations to convert an LP into an equivalent one:

1. Multiply the objective function by -1 and change “max” to “min” or “min” to “max.”
2. Multiply an inequality constraint by -1 to change the direction of the inequality.
3. Replace an equality constraint
\[\sum_{j=1}^{n} a_{ij}x_j = b_i \]
with two inequality constraints
\[\sum_{j=1}^{n} a_{ij}x_j \leq b_i \]
\[-\sum_{j=1}^{n} a_{ij}x_j \leq -b_i \]

4. Replace a variable that is nonpositive with a variable that is its negative. For example, if \(x_j \) is specified to be nonpositive by \(x_j \leq 0 \), replace every occurrence of \(x_j \) with \(-\hat{x}_j\) and require \(\hat{x}_j \geq 0 \).

5. Replace a variable that is unrestricted in sign with the difference of two nonnegative variables. For example, if \(x_j \) is unrestricted (sometimes called free), replace every occurrence of \(x_j \) with \(x_j^+ - x_j^- \) and require that \(x_j^+ \) and \(x_j^- \) be nonnegative variables.

Using these transformations, every LP can be converted into an equivalent one in standard form. By equivalent I mean that a feasible (respectively, optimal) solution to the original problem can be obtained from a feasible (respectively, optimal) solution to the new problem. The dual to the equivalent problem can then be determined. But you can also apply the inverses of the above transformations to the dual and get an appropriate dual to the original problem.

Try some concrete examples for yourself, and then dive into the proof of the following theorem:

Theorem 8.20 The following is a pair of dual LP’s:

\[
\begin{align*}
(P) & \quad \max \sum_{j=1}^{n} c_j x_j \\
& \text{s.t. } \sum_{j=1}^{n} a_{ij} x_j \leq b_i, \quad i \in I_1 \\
& \quad \sum_{j=1}^{n} a_{ij} x_j \geq b_i, \quad i \in I_2 \\
& \quad \sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i \in I_3 \\
& \quad x_j \geq 0, \quad j \in J_1 \\
& \quad x_j \leq 0, \quad j \in J_2 \\
& \quad x_j \text{ unrestricted in sign}, \quad j \in J_3
\end{align*}
\]

\[
(D) & \quad \min \sum_{i=1}^{m} b_i y_i \\
& \text{s.t. } \sum_{i=1}^{m} a_{ij} y_i \geq c_j, \quad j \in J_1 \\
& \quad \sum_{i=1}^{m} a_{ij} y_i \leq c_j, \quad j \in J_2 \\
& \quad \sum_{i=1}^{m} a_{ij} y_i = c_j, \quad j \in J_3 \\
& \quad y_i \geq 0, \quad i \in I_1 \\
& \quad y_i \leq 0, \quad i \in I_2 \\
& \quad y_i \text{ unrestricted in sign}, \quad i \in I_3
\]
where \((I_1, I_2, I_3)\) is a partition of \(\{1, \ldots, m\}\) and \((J_1, J_2, J_3)\) is a partition of \(\{1, \ldots, n\}\).

Proof. Rewrite \((P)\) in matrix form:

\[
\begin{align*}
\max & \quad c^T x^1 + c^2 T x^2 + c^3 T x^3 \\
\text{s.t.} & \quad \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} x^1 \\ x^2 \\ x^3 \end{bmatrix} \leq \begin{bmatrix} b^1 \\ b^2 \\ b^3 \end{bmatrix} \\
& \quad x^1 \geq O \\
& \quad x^2 \leq O \\
& \quad x^3 \text{ unrestricted}
\end{align*}
\]

Now make the substitutions \(\hat{x}^1 = x^1, \hat{x}^2 = -x^2\) and \(\hat{x}^3 = \hat{x}^4 = x^3\):

\[
\begin{align*}
\max & \quad c^T \hat{x}^1 - c^2 T \hat{x}^2 + c^3 T \hat{x}^3 - c^3 T \hat{x}^4 \\
\text{s.t.} & \quad \begin{bmatrix} A_{11} & -A_{12} & A_{13} & -A_{13} \\ -A_{21} & A_{22} & -A_{23} & A_{23} \\ A_{31} & -A_{32} & A_{33} & -A_{33} \\ -A_{31} & A_{32} & -A_{33} & A_{33} \end{bmatrix} \begin{bmatrix} \hat{x}^1 \\ \hat{x}^2 \\ \hat{x}^3 \\ \hat{x}^4 \end{bmatrix} \leq \begin{bmatrix} b^1 \\ -b^2 \\ b^3 \\ -b^3 \end{bmatrix} \\
& \quad \hat{x}^1, \hat{x}^2, \hat{x}^3, \hat{x}^4 \geq O \\
\end{align*}
\]

Transform the constraints:

\[
\begin{align*}
\max & \quad c^T \hat{x}^1 - c^2 T \hat{x}^2 + c^3 T \hat{x}^3 - c^3 T \hat{x}^4 \\
\text{s.t.} & \quad \begin{bmatrix} A_{11} & -A_{12} & A_{13} & -A_{13} \\ -A_{21} & A_{22} & -A_{23} & A_{23} \\ A_{31} & -A_{32} & A_{33} & -A_{33} \\ -A_{31} & A_{32} & -A_{33} & A_{33} \end{bmatrix} \begin{bmatrix} \hat{x}^1 \\ \hat{x}^2 \\ \hat{x}^3 \\ \hat{x}^4 \end{bmatrix} \leq \begin{bmatrix} b^1 \\ -b^2 \\ b^3 \\ -b^3 \end{bmatrix} \\
& \quad \hat{x}^1, \hat{x}^2, \hat{x}^3, \hat{x}^4 \geq O \\
\end{align*}
\]

Take the dual:

\[
\begin{align*}
\min & \quad b^1 T \hat{y}^1 - b^2 T \hat{y}^2 + b^3 T \hat{y}^3 - b^3 T \hat{y}^4 \\
\text{s.t.} & \quad \begin{bmatrix} A_{11}^T & -A_{12}^T & A_{13}^T & -A_{13}^T \\ -A_{12}^T & A_{22}^T & -A_{23}^T & A_{23}^T \\ A_{13}^T & -A_{32}^T & A_{33}^T & -A_{33}^T \\ -A_{13}^T & A_{32}^T & -A_{33}^T & A_{33}^T \end{bmatrix} \begin{bmatrix} \hat{y}^1 \\ \hat{y}^2 \\ \hat{y}^3 \\ \hat{y}^4 \end{bmatrix} \geq \begin{bmatrix} c^1 \\ -c^2 \\ c^3 \\ -c^3 \end{bmatrix} \\
& \quad \hat{y}^1, \hat{y}^2, \hat{y}^3, \hat{y}^4 \geq O \\
\end{align*}
\]
Transform the constraints:

\[
\min b^1 T \hat{y}^1 - b^2 T \hat{y}^2 + b^3 T \hat{y}^3 - b^4 T \hat{y}^4
\]

s.t.

\[
\begin{bmatrix}
A^T_{11} & -A^T_{21} & A^T_{31} & -A^T_{34} \\
A^T_{12} & -A^T_{22} & A^T_{32} & -A^T_{32} \\
A^T_{13} & -A^T_{23} & A^T_{33} & -A^T_{33}
\end{bmatrix}
\begin{bmatrix}
\hat{y}^1 \\
\hat{y}^2 \\
\hat{y}^3 \\
\hat{y}^4
\end{bmatrix}
\geq
\begin{bmatrix}
c^1 \\
c^2 \\
c^3
\end{bmatrix}
\]

\[
\hat{y}^1, \hat{y}^2, \hat{y}^3, \hat{y}^4 \geq O
\]

Transform the variables by setting \(y^1 = \hat{y}^1 \), \(y^2 = -\hat{y}^2 \), and \(y^3 = \hat{y}^3 - \hat{y}^4 \):

\[
\min b^1 T y^1 + b^2 T y^2 + b^3 T y^3
\]

s.t.

\[
\begin{bmatrix}
A^T_{11} & A^T_{21} & A^T_{31} \\
A^T_{12} & A^T_{22} & A^T_{32} \\
A^T_{13} & A^T_{23} & A^T_{33}
\end{bmatrix}
\begin{bmatrix}
y^1 \\
y^2 \\
y^3
\end{bmatrix}
\geq
\begin{bmatrix}
c^1 \\
c^2 \\
c^3
\end{bmatrix}
\]

\[
y^1 \geq O
\]

\[
y^2 \leq O
\]

\[
y^3 \text{ unrestricted}
\]

Write this in summation form, and you have \((D)\). □

Whew! Anyway, this pair of dual problems will satisfy all of the duality theorems, so it was probably worth working through this generalization at least once. We say that \((D)\) is the dual of \((P)\), and also that \((P)\) is the dual of \((D)\). Note that there is still a one-to-one correspondence between the variables in one LP and the “main” constraints (not including the variable sign restrictions) in the other LP. Hillier and Lieberman (Introduction to Operations Research) suggest the following mnemonic device. Classify variables and constraints of linear programs as standard (S), opposite (O), or bizarre (B) as follows:

Maximization Problems

<table>
<thead>
<tr>
<th>Variables</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>≥ 0</td>
</tr>
<tr>
<td>(O)</td>
<td>≤ 0</td>
</tr>
<tr>
<td>(B)</td>
<td>unrestricted in sign</td>
</tr>
</tbody>
</table>

Minimization Problems

<table>
<thead>
<tr>
<th>Variables</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>≥ 0</td>
</tr>
<tr>
<td>(O)</td>
<td>≤ 0</td>
</tr>
<tr>
<td>(B)</td>
<td>unrestricted in sign</td>
</tr>
</tbody>
</table>

Then in the duality relationship, standard variables are paired with standard constraints, opposite variables are paired with opposite constraints, and bizarre variables are paired with bizarre constraints. If we express a pair of dual linear programs in compact form, labeling
columns according to the type of variable and rows according to the type of constraint, we see that they are still transposes of each other:

\[
\begin{bmatrix}
S & O & B \\
S & A_{11} & A_{12} & A_{13} & b^1 \\
O & A_{21} & A_{22} & A_{23} & b^2 \\
B & A_{31} & A_{32} & A_{33} & b^3 \\
c^1 & c^2 & c^3 & \text{max}
\end{bmatrix}
\]

\[
\begin{bmatrix}
S & O & B \\
S & A_{11} & A_{21} & A_{31} & c^1 \\
O & A_{12} & A_{22} & A_{32} & c^2 \\
B & A_{13} & A_{23} & A_{33} & c^3 \\
b^1 & b^2 & b^3 & \text{min}
\end{bmatrix}
\]

\((P)\) \quad (D)

Example 8.21 The following is a pair of dual linear programs:

\[
\begin{align*}
(P) & \quad \text{max} & 3x_1 & -2x_2 & +4x_4 & +5x_5 \\
\text{s.t.} & & x_1 & +x_2 & \geq & 3 \\
& & x_1 & -x_2 & +x_3 & -x_4 & +x_5 & = 10 \\
& & -6x_1 & +2x_3 & +4x_4 & +x_5 & \leq 2 \\
& & 9x_2 & -11x_4 & \geq & 0 \\
x_1, x_5 & \geq & 0 \\
x_2, x_3 & \leq & 0 \\
x_4 & \text{unrestricted in sign}
\end{align*}
\]

\[
\begin{align*}
(D) & \quad \text{min} & 3y_1 & +10y_2 & +2y_3 \\
\text{s.t.} & & y_1 & +y_2 & -6y_3 & \geq & 3 \\
& & y_1 & -y_2 & +9y_4 & \leq & -2 \\
& & y_2 & +2y_3 & \leq & 0 \\
& & -y_2 & +4y_3 & -11y_4 & = & 4 \\
& & y_2 & +y_3 & \geq & 5 \\
y_1, y_4 & \leq & 0 \\
y_2 & \text{unrestricted in sign} \\
y_3 & \geq & 0
\end{align*}
\]

\[
\begin{bmatrix}
S & O & O & O & O & S \\
O & 1 & 1 & 0 & 0 & 0 & 3 \\
B & 1 & -1 & 1 & -1 & 1 & 10 \\
S & -6 & 0 & 2 & 4 & 1 & 2 \\
O & 0 & 9 & 0 & -11 & 0 & 0 \\
3 & -2 & 0 & 4 & 5 & \text{max}
\end{bmatrix}
\]

\[
\begin{bmatrix}
O & B & S & O \\
S & 1 & 1 & -6 & 0 & 3 \\
O & 1 & -1 & 0 & 9 & -2 \\
O & 0 & 1 & 2 & 0 & 0 \\
B & 0 & -1 & 4 & -11 & 4 \\
S & 0 & 1 & 1 & 0 & 5 \\
3 & 10 & 2 & 0 & \text{min}
\end{bmatrix}
\]

Here are some special cases of pairs of dual LP’s:

\[
\begin{align*}
(P) & \quad \text{max} c^T x \\
\text{s.t.} & \quad Ax \leq b & (D) & \quad \text{min} y^T b \\
& \quad y^T A = c^T \\
& \quad y \geq O
\end{align*}
\]

53
and

$$\begin{align*}
\text{(P)} & \quad \max c^T x \\
\text{ s.t. } & \quad Ax = b \quad \text{ (D)} & \quad \min y^T b \\
& \quad x \geq O & \quad y^T A \geq c^T
\end{align*}$$

Exercise 8.22 Suppose (P) and (D) are as given in Theorem 8.20. Show that the appropriate general forms of (UP) and (UD) are:

(P)
\[\begin{align*}
\sum_{j=1}^{n} a_{ij}w_j & \leq 0, \quad i \in I_1 \\
\sum_{j=1}^{n} a_{ij}w_j & \geq 0, \quad i \in I_2 \\
\sum_{j=1}^{n} a_{ij}w_j & = 0, \quad i \in I_3 \\
\sum_{j=1}^{n} c_jw_j & > 0
\end{align*} \]

(UD)
\[\begin{align*}
\sum_{i=1}^{m} a_{ij}v_i & \geq 0, \quad j \in J_1 \\
\sum_{i=1}^{m} a_{ij}v_i & \leq 0, \quad j \in J_2 \\
\sum_{i=1}^{m} a_{ij}v_i & = 0, \quad j \in J_3 \\
\sum_{i=1}^{m} b_i v_i & < 0 \\
v_i & \geq 0, \quad i \in I_1 \\
v_i & \leq 0, \quad i \in I_2 \\
v_i & \text{ unrestricted in sign, } \quad i \in I_3
\end{align*} \]

\[\square \]

8.7 Geometric Motivation of Duality

We mentioned in the last section that the following is a pair of dual LP’s:

$$\begin{align*}
\text{(P)} & \quad \max c^T x \\
\text{ s.t. } & \quad Ax \leq b \quad \text{(D)} & \quad \min y^T b \\
& \quad y^T A = c^T \quad \text{ s.t. } y \geq O
\end{align*}$$

What does it mean for \(\overline{\pi} \) and \(\overline{\eta} \) to be feasible and satisfy complementary slackness for this pair of LP’s? The solution \(\overline{\eta} \) to (D) gives a way to write the objective function vector of (P) as a nonnegative linear combination of the outer normals of the constraints of (P). In effect, (D) is asking for the “cheapest” such expression. If \(\overline{\pi} \) does not satisfy a constraint of (P) with equality, then the corresponding dual variable must be zero by complementary slackness. So the only outer normals used in the nonnegative linear combination are those for the binding constraints (the constraints satisfied by \(\overline{\pi} \) with equality).

We have seen this phenomenon when we looked at two-variable linear programs earlier. For example, look again at Exercise 4.3. Every dual-feasible pair of constraints corresponds
to a particular solution to the dual problem (though there are other solutions to the dual as well), and a pair of constraints that is both primal-feasible and dual feasible corresponds to a pair of solutions to \((P)\) and \((D)\) that satisfy complementary slackness and hence are optimal.
9 Exercises: Duality

Note: By \(e \) is meant a vector consisting of all 1’s.

Exercise 9.1 Consider the classic diet problem: Various foods are available, each unit of which contributes a certain amount toward the minimum daily requirements of various nutritional needs. Each food has a particular cost. The goal is to choose how many units of each food to purchase to meet the minimum daily nutritional requirements, while minimizing the total cost. Formulate this as a linear program, and give an “economic interpretation” of the dual problem. □

Exercise 9.2 Find a linear program \((P)\) such that both \((P)\) and its dual \((D)\) are infeasible. □

Exercise 9.3 Prove that the set \(S = \{ x : Ax \leq b, \ x \geq O \} \) is unbounded if and only if \(S \neq \emptyset \) and the following system is feasible:

\[
\begin{align*}
Aw & \leq O \\
w & \geq O \\
w & \neq O
\end{align*}
\]

Note: By \(w \geq O, w \neq O \) is meant that every component of \(w \) is nonnegative, and at least one component is positive. A solution to the above system is called a feasible direction for \(S \). Draw some examples of two variable regions to illustrate how you can find the set of feasible directions geometrically. □

Exercise 9.4 Prove that if the LP

\[
\begin{align*}
\text{max } c^T x \\
\text{s.t. } Ax & \leq b \\
x & \geq O
\end{align*}
\]

is unbounded, then the LP

\[
\begin{align*}
\text{max } e^T x \\
\text{s.t. } Ax & \leq b \\
x & \geq O
\end{align*}
\]

is unbounded. What can you say about the converse of this statement? □
Exercise 9.5 Suppose you use Lagrange multipliers to solve the following problem:

\[
\begin{align*}
\text{max } & \quad c^T x \\
\text{s.t.} & \quad Ax = b
\end{align*}
\]

What is the relationship between the Lagrange multipliers and the dual problem? \(\square\)

Exercise 9.6 Suppose that the linear program

\[
\begin{align*}
\text{max } & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \geq O
\end{align*}
\]

is unbounded. Prove that, for any \(\hat{b}\), the following linear program is either infeasible or unbounded:

\[
\begin{align*}
\text{max } & \quad c^T x \\
\text{s.t.} & \quad Ax \leq \hat{b} \\
& \quad x \geq O
\end{align*}
\]

\(\square\)

Exercise 9.7 Consider the following linear programs:

\[
\begin{align*}
\text{(P)} & \quad \text{max } c^T x \\
& \quad \text{s.t. } Ax \leq b \\
& \quad x \geq O \\
\text{(P)} & \quad \text{max } c^T x \\
& \quad \text{s.t. } Ax \leq b + u \\
& \quad x \geq O \\
\text{(D)} & \quad \text{min } y^T b \\
& \quad \text{s.t. } y^T A \geq c^T \\
& \quad y \geq O
\end{align*}
\]

Here, \(u\) is a vector the same size as \(b\). \((u\) is a vector of real numbers, not variables\). Assume that \(\text{(P)}\) has a finite optimal objective function value \(z^*\). Let \(y^*\) be any optimal solution to \(\text{(D)}\). Prove that \(c^T x \leq z^* + u^T y^*\) for every feasible solution \(x\) of \(\text{(P)}\). What does this mean economically when applied to the GGMC problem? \(\square\)

Exercise 9.8 Consider the following pair of linear programs:

\[
\begin{align*}
\text{(P)} & \quad \text{max } c^T x \\
& \quad \text{s.t. } Ax \leq b \\
& \quad x \geq O \\
\text{(D)} & \quad \text{min } y^T b \\
& \quad \text{s.t. } y^T A \geq c^T \\
& \quad y \geq O
\end{align*}
\]

For all nonnegative \(x\) and \(y\), define the function \(\phi(x, y) = c^T x + y^T b - y^T Ax\). Assume that \(\overline{x}\) and \(\overline{y}\) are nonnegative. Prove that \(\overline{x}\) and \(\overline{y}\) are feasible and optimal for the above two linear programs, respectively, if and only if

\[\phi(\overline{x}, y) \geq \phi(\overline{x}, \overline{y}) \geq \phi(x, \overline{y})\]

for all nonnegative \(x\) and \(y\) (whether \(x\) and \(y\) are feasible for the above linear programs or not). (This says that \((\overline{x}, \overline{y})\) is a saddlepoint of \(\phi\).) \(\square\)
Exercise 9.9 Consider the fractional linear program

\[
(FP) \quad \max \frac{c^T x + \alpha}{d^T x + \beta} \\
\text{s.t.} \quad Ax \leq b \\
x \geq O
\]

and the associated linear program

\[
(P) \quad \max c^T w + \alpha t \\
\text{s.t.} \quad Aw - bt \leq O \\
d^T w + \beta t = 1 \\
w \geq O, t \geq 0
\]

where \(A\) is an \(m \times n\) matrix, \(b\) is an \(m \times 1\) vector, \(c\) and \(d\) are \(n \times 1\) vectors, and \(\alpha\) and \(\beta\) are scalars. The variables \(x\) and \(w\) are \(n \times 1\) vectors, and \(t\) is a scalar variable.

Suppose that the feasible region for \((FP)\) is nonempty, and that \(d^T x + \beta > 0\) for all \(x\) that are feasible to \((FP)\). Let \((w^*, t^*)\) be an optimal solution to \((P)\).

1. Suppose that the feasible region of \((FP)\) is a bounded set. Prove that \(t^* > 0\).

2. Given that \(t^* > 0\), demonstrate how an optimal solution of \((FP)\) can be recovered from \((w^*, t^*)\) and prove your assertion.

\[
\square
\]

Exercise 9.10

1. Give a geometric interpretation of complementary slackness for the LP

\[
\max c^T x \\
\text{s.t.} \quad Ax \leq b \\
x \geq O
\]

and its dual.

2. Now give an economic interpretation of complementary slackness.

\[
\square
\]

58
Exercise 9.11 Consider the linear program
\[
\begin{align*}
(P) & \quad \text{min } c^T x \\
& \quad \text{s.t. } Ax = b \\
& \quad \ell \leq x \leq u
\end{align*}
\]
where \(\ell \) and \(u \) are vectors of constants and \(\ell_i < u_i \) for all \(i \). Suppose that \(x \) is feasible for \((P)\). Prove that \(x \) is optimal for \((P)\) if and only if there exists a vector \(y \) such that, for all \(i \),
\[
\begin{align*}
(A^T y)_i & \geq c_i \quad \text{if } x_i > \ell_i \\
(A^T y)_i & \leq c_i \quad \text{if } x_i < u_i.
\end{align*}
\]
\(\blacksquare \)

Exercise 9.12 There are algorithmic proofs using the simplex method of Theorem 8.13 that do not explicitly rely upon Theorem 6.3—see the discussion leading up to Theorem 10.24. Assume that Theorem 8.13 has been proved some other way. Now reprove Theorem 6.3 using Theorem 8.13 and the fact that \((I)\) is feasible if and only if the following LP is feasible (and thus has optimal value 0):
\[
\begin{align*}
(P) & \quad \text{max } O^T x \\
& \quad \text{s.t. } Ax \leq b \\
& \quad \quad x \geq O
\end{align*}
\]
\(\blacksquare \)

Exercise 9.13 Derive and prove a Theorem of the Alternatives for the system
\[
(I) \quad Ax < b
\]
in the following way: Introduce a scalar variable \(t \) and a vector \(e \) of 1’s, and consider the LP
\[
(P) \quad \text{max } t \\
\quad \text{s.t. } Ax + et \leq b
\]
Begin by noting that \((P)\) is always feasible, and proving that \((I)\) is infeasible if and only if \((P)\) has a nonpositive optimal value. \(\blacksquare \)

Exercise 9.14 Consider the pair of dual LP’s
\[
\begin{align*}
(P) & \quad \text{max } c^T x \\
& \quad \text{s.t. } Ax \leq b \\
& \quad \quad x \geq O
\end{align*}
\]
\[
\begin{align*}
(D) & \quad \text{min } y^T b \\
& \quad \text{s.t. } y^T A \geq c^T \\
& \quad \quad y \geq O
\end{align*}
\]
Suppose \(\bar{x} \) and \(\bar{y} \) are feasible for \((P)\) and \((D)\), respectively. Then \(\bar{x} \) and \(\bar{y} \) satisfy strong complementary slackness if
1. For all j, either $x_j = 0$ or $\sum_{i=1}^{m} a_{ij} y_i = c_j$, but not both; and

2. For all i, either $y_i = 0$ or $\sum_{j=1}^{n} a_{ij} x_j = b_i$, but not both.

Prove that if (P) and (D) are both feasible, then there exists a pair \mathbf{x}, \mathbf{y} of optimal solutions to (P) and (D), respectively, that satisfies strong complementary slackness. Illustrate with some examples of two variable LP’s. Hint: One way to do this is to consider the following LP:

$$\max \ t$$
$$\text{s.t. } Ax \leq b$$
$$Ax - Iy + et \leq b$$
$$-ATy \leq -c$$
$$Ix - A'Ty + ft \leq -c$$
$$-c'x + b'Ty \leq 0$$
$$x, \ y, \ t \geq 0$$

Here, both e and f are vectors of all 1’s, and t is a scalar variable. □

Exercise 9.15 Consider the quadratic programming problem

$$(P) \quad \min Q(x) = c^T x + \frac{1}{2} x^T D x$$
$$\text{s.t. } Ax \geq b$$
$$x \geq 0$$

where A is an $m \times n$ matrix and D is a symmetric $n \times n$ matrix.

1. Assume that \mathbf{x} is an optimal solution of (P). Prove that \mathbf{x} is an optimal solution of the following linear program:

$$(P') \quad \min (c^T + \mathbf{x}^T D)x$$
$$\text{s.t. } Ax \geq b$$
$$x \geq 0$$

Suggestion: Let \hat{x} be any other feasible solution to (P'). Then $\lambda \hat{x} + (1 - \lambda)\mathbf{x}$ is also a feasible solution to (P') for any $0 < \lambda < 1$.

2. Assume that \mathbf{x} is an optimal solution of (P). Prove that there exist nonnegative vectors $\mathbf{y} \in \mathbb{R}^m$, $\mathbf{u} \in \mathbb{R}^n$, and $\mathbf{v} \in \mathbb{R}^m$ such that

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} - \begin{bmatrix} D & -A^T \\ A & O \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} c \\ -b \end{bmatrix}$$

and such that $\mathbf{u}^T \mathbf{x} + \mathbf{v}^T \mathbf{y} = 0$.
Exercise 9.16 Consider a $p \times q$ chessboard. Call a subset of cells independent if no pair of cells are adjacent to each other via a single knight’s move. Call any line segment joining the centers of two cells that are adjacent via a single knight’s move a knight line. A knight line is said to cover its two endpoint cells. A knight line cover is a set of knight lines such that every cell on a chessboard is covered by at least one knight line. Consider the problem (P) of finding the maximum size k^* of an independent set. Consider the problem (D) of finding the minimum size ℓ^* of a knight lines cover. Prove that if k is the size of any independent set and ℓ is the size of any knight line cover, then $k \leq \ell$. Conclude that $k^* \leq \ell^*$. Use this result to solve both (P) and (D) for the 8×8 chessboard. For the 2×6 chessboard. □

Exercise 9.17 Look up the definitions and some theorems about Eulerian graphs. Explain why the question: “Is a given graph G Eulerian?” has a good characterization. □

10 The Simplex Method

10.1 Bases and Tableaux

[The next few sections were from an earlier version of my notes, developing the simplex method from the point of view of tableaux.]

In this section we finally begin to discuss how to solve linear programs. Let’s start with a linear program in standard form

\[
\begin{align*}
\text{max } z & = \hat{c}^T \hat{x} \\
\text{s.t. } \hat{A}\hat{x} & \leq \hat{b} \\
\hat{x} & \geq O
\end{align*}
\]

where \(\hat{A}\) is an \(m \times n\) matrix.

The dual of \((\hat{P})\) is

\[
\begin{align*}
\text{min } \hat{y}^T \hat{b} & \\
\text{s.t. } \hat{y}^T \hat{A} & \geq \hat{c}^T \\
\hat{y} & \geq O
\end{align*}
\]

In summation notation, \((\hat{P})\) is of the form

\[
\begin{align*}
\text{max } z & = \sum_{j=1}^{n} c_j x_j \\
\text{s.t. } \sum_{j=1}^{n} a_{ij} x_j & \leq b_i, \quad i = 1, \ldots, m \\
x_j & \geq 0, \quad j = 1, \ldots, n
\end{align*}
\]

The first step will be to turn this system into a system of equations by introducing \(m\) nonnegative slack variables, one for each inequality in \(\hat{A}\hat{x} \leq \hat{b}\):

\[
\begin{align*}
\text{max } z & = \sum_{j=1}^{n} c_j x_j \\
\text{s.t. } (\sum_{j=1}^{n} a_{ij} x_j) + x_{n+i} & = b_i, \quad i = 1, \ldots, m \\
x_j & \geq 0, \quad j = 1, \ldots, n + m
\end{align*}
\]

Now we have a problem of the form

\[
\begin{align*}
\text{max } c^T x & \\
\text{s.t. } A x & = b \\
x & \geq O
\end{align*}
\]
where \(x = (\hat{x}, x_{n+1}, \ldots, x_{n+m}) \), \(c = (\hat{c}, 0, \ldots, 0) \), and \(A = [\hat{A} | I] \). In particular, the rows of \(A \) are linearly independent (\(A \) has full row rank).

The dual of \((P)\) is

\[
(D) \quad \begin{array}{l}
\min y^T b \\
\text{s.t. } y^T A \geq c^T
\end{array}
\]

We can write \((P)\) as a tableau:

\[
\begin{array}{c|c|c}
A & O & b \\
\hline
c^T & 1 & 0
\end{array}
\]

which represents the system

\[
\begin{bmatrix}
A & O \\
c^T & 1
\end{bmatrix}
\begin{bmatrix}
x \\
-z
\end{bmatrix} =
\begin{bmatrix}
b \\
0
\end{bmatrix}.
\]

Example 10.1 With the addition of slack variables, the GGMC problem becomes

\[
\begin{align*}
\max z &= 5x_1 + 4x_2 \\
\text{s.t. } x_1 + 2x_2 + x_3 &= 120 \\
x_1 + x_2 + x_4 &= 70 \\
2x_1 + x_2 + x_5 &= 100 \\
x_1, \ldots, x_5 &\geq 0
\end{align*}
\]

which in tableau form is

\[
\begin{array}{cccccc|c}
x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
\hline
1 & 2 & 1 & 0 & 0 & 0 & 120 \\
1 & 1 & 0 & 1 & 0 & 0 & 70 \\
2 & 1 & 0 & 0 & 1 & 0 & 100 \\
5 & 4 & 0 & 0 & 0 & 1 & 0
\end{array}
\]

Definition 10.2 By \(A_j \) we mean the \(j \)th column of \(A \). Let \(S = (j_1, \ldots, j_k) \) be an ordered subset of \(\{1, \ldots, n + m\} \). By \(x_S \) we mean \((x_{j_1}, \ldots, x_{j_k})\). Similarly, \(c_S = (c_{j_1}, \ldots, c_{j_k}) \), and \(A_S \) is the \(m \times k \) matrix \([A_{j_1} \cdots A_{j_k}]\).

An ordered set \(B \subseteq \{1, \ldots, n + m\} \) is a basis if \(\text{card } B = m \) and \(A_B \) is a nonsingular \(m \times m \) submatrix of \(A \). If \(B \) is a basis, then the variables in \(x_B \) are called the basic variables, and the variables in \(x_N \) are called the nonbasic variables, where \(N = (1, \ldots, n + m) \setminus B \).

We will follow a time-honored traditional abuse of notation and write \(B \) instead of \(A_B \), and \(N \) instead of \(A_N \). Whether \(B \) or \(N \) stands for a subset or a matrix should be clear from context.
Given a basis B, we can perform elementary row operations on the tableau so that the columns associated with B and $-z$ form an identity matrix within the tableau. (Arrange it so that the last row continues to contain the entry 1 in the $-z$ column.) If the ordered basis is (j_1, \ldots, j_m), then the columns of the identity matrix appear in the same order, finishing up with the $-z$ column. The resulting tableau is called a basic tableau. Let us denote it by

$$
\begin{array}{ccc|c}
A & O & b \\
\tau^t & 1 & -b_0 \\
\end{array}
$$

The tableau represents a set of equations

$$
\begin{align*}
\overline{Ax} &= \overline{b} \\
\tau^T x - z &= -b_0
\end{align*}
$$

(2)

that is equivalent to the original set of equations

$$
\begin{align*}
Ax &= b \\
c^T x - z &= 0
\end{align*}
$$

(3)

since it was obtained by elementary (invertible) row operations from the original set. That is to say, (x, z) satisfies (2) if and only if it satisfies (3).

Example 10.3 Some bases and basic tableaux for the GGMC problem.

1. $B = (3, 4, 5)$

$$
\begin{array}{cccccc|c}
x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
1 & 2 & 1 & 0 & 0 & 120 \\
1 & 1 & 0 & 1 & 0 & 70 \\
2 & 1 & 0 & 0 & 1 & 100 \\
5 & 4 & 0 & 0 & 0 & 1 \\
-1 & 0 & 1 & -2 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 70 \\
1 & 0 & 0 & -1 & 1 & 30 \\
1 & 0 & 0 & -4 & 0 & 1 \\
\end{array}
$$

2. $B = (3, 2, 5)$

$$
\begin{array}{cccccc|c}
x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
-1 & 0 & 1 & -2 & 0 & -20 \\
1 & 1 & 0 & 1 & 0 & 70 \\
1 & 0 & 0 & -1 & 1 & 30 \\
1 & 0 & 0 & -4 & 0 & 1 \\
\end{array}
$$
3. \(B = (3, 2, 1) \)

\[
\begin{array}{cccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
0 & 0 & 1 & -3 & 1 & 0 & 10 \\
0 & 1 & 0 & 2 & -1 & 0 & 40 \\
1 & 0 & 0 & -1 & 1 & 0 & 30 \\
0 & 0 & 0 & -3 & -1 & 1 & -310
\end{array}
\]

4. \(B = (4, 2, 1) \)

\[
\begin{array}{cccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
0 & 0 & -1/3 & 1 & -1/3 & 0 & -10/3 \\
0 & 1 & 2/3 & 0 & -1/3 & 0 & 140/3 \\
1 & 0 & -1/3 & 0 & 2/3 & 0 & 80/3 \\
0 & 0 & -1 & 0 & -2 & 1 & -320
\end{array}
\]

5. \(B = (5, 2, 1) \)

\[
\begin{array}{cccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
0 & 0 & 1 & -3 & 1 & 0 & 10 \\
0 & 1 & 1 & -1 & 0 & 0 & 50 \\
1 & 0 & -1 & 2 & 0 & 0 & 20 \\
0 & 0 & 1 & -6 & 0 & 1 & -300
\end{array}
\]

By the way, most people do not include the \(-z\) column, since it is always the same. I kept it in so that the full identity matrix would be evident.

Definition 10.4 For every basic tableau there is a natural solution to \(Ax = b\); namely, set \(x_N = O\) and read off the values of \(x_B\) from the last column. The resulting point is called a **basic point**. What we are doing is equivalent to solving \(Bx_B + Nx_N = b\) by setting \(x_N = O\) and solving \(Bx_B = b\) to get \(x_B = B^{-1}b\). We can also find the value \(-\bar{z}\) of \(-z = -c^T\bar{x}\) associated with the basic point \(\bar{x}\) in the lower right-hand entry.

Example 10.5 The basic points for the basic tableaux in the previous example are:

1. \(B = (3, 4, 5): \bar{x} = (0, 0, 120, 70, 100), c^T\bar{x} = 0.\)
2. \(B = (3, 2, 5): \bar{x} = (0, 70, -20, 0, 30), c^T\bar{x} = 280.\)
3. \(B = (3, 2, 1): \bar{x} = (30, 40, 10, 0, 0), c^T\bar{x} = 310.\)
4. \(B = (4, 2, 1): \bar{x} = (80/3, 140/3, 0, -10/3, 0), c^T\bar{x} = 320.\)
5. \(B = (5, 2, 1) \): \(\bar{x} = (20, 50, 0, 0, 10) \), \(c^T \bar{x} = 300 \).

Examine the graph for the GGMC problem. In each case the first two coordinates give a point that is the intersection of two of the lines corresponding to the five original constraints. The reason for this is that setting a variable equal to zero is equivalent to enforcing a constraint with equality. In particular, setting one of the two original variables \(x_1, x_2 \) to zero enforces the respective constraint \(x_1 \geq 0 \) or \(x_2 \geq 0 \) with equality; whereas setting one of the three slack variables \(x_3, x_4, x_5 \) to zero enforces one of the respective constraints \(x_1 + 2x_2 \leq 120 \), \(x_1 + x_2 \leq 70 \), \(2x_1 + x_2 \leq 100 \) with equality. Since in this example every constraint corresponds to a halfplane and there are always two nonbasic variables, the point is the intersection of two lines. Think about Exercise 4.3 during the following discussion. \(\square \)

Definition 10.6 If \(B \) is a basis such that the corresponding basic point \(\bar{x} \) is nonnegative, then \(\bar{x} \) is feasible for the linear program \((P) \), and dropping the slack variables yields a feasible solution for the linear program \((\hat{P}) \). In such a case, \(B \) is called a (primal) feasible basis, the tableau is called a (primal) feasible tableau, and \(\bar{x} \) is called a (primal) basic feasible solution (BFS).

Suppose \(T \) is our initial tableau and \(\bar{T} \) is a tableau associated with a basis \(B \). Let’s try to understand the entries of \(\bar{T} \). There exists a square matrix \(M \) such that \(MT = \bar{T} \). You can find this matrix within \(\bar{T} \) by looking where the identity matrix was originally in \(T \); namely, it is the submatrix of \(\bar{T} \) determined by the columns for the slack variables and \(-z\). It has the form

\[
M = \begin{bmatrix}
M' & O \\
\bar{y}^T & 1
\end{bmatrix}.
\]

(I am writing \(-\bar{y}^T\) because I know what is coming!) Now multiplying \(T \) by \(M \) creates an identity matrix in the basic columns of \(\bar{T} \), so

\[
\begin{bmatrix}
M' & O \\
\bar{y}^T & 1
\end{bmatrix}
\begin{bmatrix}
B & O \\
c_B^T & 1
\end{bmatrix} = \begin{bmatrix}
I & O \\
O^T & 1
\end{bmatrix}.
\]

From this we conclude that \(M' = B^{-1} \) and \(-\bar{y}^T B + c_B^T = O^T \), so

\[
M = \begin{bmatrix}
B^{-1} & O \\
\bar{y}^T & 1
\end{bmatrix}
\]

where \(\bar{y}^T = c_B^T B^{-1} \), and

\[
\bar{T} = \begin{bmatrix}
B^{-1}A & O & B^{-1}b \\
c^T - c_B^T B^{-1}A & 1 & -c_B^T B^{-1}b
\end{bmatrix} = \begin{bmatrix}
B^{-1}A & O & B^{-1}b \\
c^T - \bar{y}^T A & 1 & -\bar{y}^T b
\end{bmatrix}.
\]
Summarizing the formulas for the entries of T:

$$
\overline{y}^T = c^T_B B^{-1}
$$

$$
\overline{\alpha} = B^{-1} A
$$

$$
\overline{b} = B^{-1} b
$$

$$
\overline{c}^T = c^T - \overline{y}^T A
$$

$$
\overline{b}_0 = c^T_B B^{-1} b = \overline{y}^T b
$$

Observe that while the ordered basis (j_1, \ldots, j_m) indexes the columns of B, it indexes the rows of B^{-1}.

Exercise 10.7 For each of the bases in Example 10.3, determine the matrices B and B^{-1} (pay attention to the ordering of the rows and columns), find the vector \overline{y}^T, and check some of the formulas for \overline{c}^T, \overline{b}, and \overline{b}_0. For example, if the ordered basis is $(4, 2, 1)$, then

$$
B = \begin{bmatrix}
0 & 2 & 1 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{bmatrix},
$$

$$
B^{-1} = \begin{bmatrix}
-1/3 & 1 & -1/3 \\
2/3 & 0 & -1/3 \\
-1/3 & 0 & 2/3
\end{bmatrix},
$$

$c^T_B = (0, 4, 5)$ and $\overline{y}^T = c^T_B B^{-1} = (1, 0, 2)$. □

Note that $-\overline{y}^T$ itself can be found in the last row beneath the columns for the slack variables, and that the lower right-hand entry equals $-\overline{y}^T b$. The above calculations also confirm that the lower right-hand entry equals $-c^T \overline{x}$ for the associated basic point \overline{x}, since $c^T \overline{x} = c^T_B \overline{x}_B + c^T_N \overline{x}_N = c^T_B B^{-1} b$.

Example 10.8 The vectors \overline{y} for the basic tableaux in the previous example are:

1. $B = (3, 4, 5)$: $\overline{y} = (0, 0, 0)$, $\overline{y}^T b = 0$.

2. $B = (3, 2, 5)$: $\overline{y} = (0, 4, 0)$, $\overline{y}^T b = 280$.

67
3. $B = (3, 2, 1): \bar{y} = (0, 3, 1), \bar{y}^T b = 310.$

4. $B = (4, 2, 1): \bar{y} = (1, 0, 2), \bar{y}^T b = 320.$

5. $B = (5, 2, 1): \bar{y} = (-1, 6, 0), \bar{y}^T b = 300.$

Now we can also see a connection with the dual problem (\hat{D}). For suppose the last row of \bar{T} contains nonpositive entries in the first $n + m$ columns. Then $\bar{c}^T = c^T - \bar{y}^T A \leq O^T$, so $\bar{y}^T A \geq c^T$. Hence \bar{y} is feasible for (D). Recalling that $A = [\hat{A} \vert I]$ and $c^T = (\hat{c}^T, O^T)$, we have

\[\bar{y}^T \hat{A} \geq \hat{c}^T \]
\[\bar{y}^T I \geq O^T \]

Therefore \bar{y} is also feasible for (\hat{D}).

Definition 10.9 Suppose a basic tableau \bar{T} is given in which $\bar{y} = c_B^T B^{-1}$ is feasible for (D). Then the basis B is called a dual feasible basis, the tableau is called a dual feasible tableau, and \bar{y} is called a dual basic feasible solution.

Another way to derive the entries in \bar{T} is to solve for x_B in terms of x_N and substitute into $z = c^T x$:

\[
B x_B + N x_n = b \\
x_B + B^{-1} N x_N = B^{-1} b
\]

This accounts for the upper portion of \bar{T}.

\[
x_B = B^{-1} b - B^{-1} N x_N \\
z = c_B^T x_B + c_N^T x_N \\
= c_B^T (B^{-1} b - B^{-1} N x_N) + c_N^T x_N \\
= c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N
\]

So setting $\bar{y}^T = c_B^T B^{-1}$, we have

\[
z = \bar{y}^T b + (c_N^T - \bar{y}^T N) x_N \\
= \bar{y}^T b + (\hat{c}^T - \bar{y}^T A) x
\]

since $c_B^T - \bar{y}^T B = O^T$. This accounts for the last row of \bar{T}.
Definition 10.10 Now suppose a basic tableau \(T \) is both primal and dual feasible. Then we know that the associated basic feasible solutions \(\bar{x} \) and \(\bar{y} \) are feasible for \((P)\) and \((D)\), respectively, and have equal objective function values, since \(c^T \bar{x} = c^T_B (B^{-1} b) = (c^T_B B^{-1}) b = \bar{y}^T b \). So Weak Duality implies that \(\bar{x} \) and \(\bar{y} \) are optimal for \((P)\) and \((D)\), respectively. In this case, \(B \) is called an optimal basis, the tableau is called an optimal tableau, \(\bar{x} \) is called an optimal (primal) basic feasible solution or basic optimal solution, and \(\bar{y} \) is called an optimal dual basic feasible solution or dual basic optimal solution. Note in this case that dropping the slack variables from \(\bar{x} \) gives a feasible solution to \((\hat{P})\) which has the same objective function value as \(\bar{y} \), which is feasible for \((\hat{D})\). So we also have a pair of optimal solutions to \((\hat{P})\) and \((\hat{D})\).

Example 10.11 Classifying the tableaux in the previous example, we have:

1. \(B = (3, 4, 5) \): Primal feasible, but not dual feasible.
2. \(B = (3, 2, 5) \): Neither primal nor dual feasible.
3. \(B = (3, 2, 1) \): Both primal and dual feasible, hence optimal.
4. \(B = (4, 2, 1) \): Dual feasible, but not primal feasible.
5. \(B = (5, 2, 1) \): Primal feasible, but not dual feasible.

\[\square \]

10.2 Pivoting

The simplex method solves the linear program \((P)\) by attempting to find an optimal tableau. One can move from a basic tableau to an “adjacent” one by pivoting.

Given a matrix \(M \) and a nonzero entry \(m_{rs} \), a pivot is carried out in the following way:

1. Multiply row \(r \) by \(m_{rs}^{-1} \).

2. For each \(i \neq r \), add the necessary multiple of row \(r \) to row \(i \) so that the \((i, s)\)th entry becomes zero. This is done by adding \(-m_{is}/m_{rs}\) times row \(r \) to row \(i \).

Row \(r \) is called the pivot row, column \(s \) is called the pivot column, and \(m_{rs} \) is called the pivot entry. Note that if \(M \) is \(m \times n \) and contains an \(m \times m \) identity matrix before the pivot, then it will contain an identity matrix after the pivot. Column \(s \) will become \(e_r \) (the vector with all components equal 0 except for a 1 in the \(r \)th position). Any column of \(M \) that equals \(e_i \) with \(i \neq r \) will remain unchanged by the pivot.
Example 10.12 Pivoting on the entry in row 1, column 4 of Tableau 5 of Example 10.3 results in Tableau 4. □

Suppose we have a feasible basis B with associated primal feasible tableau T. It is convenient to label the rows of T (and the entries of \tilde{b}) by the elements of the basis B, since each basic variable appears with nonzero coefficient in exactly one row. For example, the rows of Tableau 5 in Example 10.3 would be labeled 5, 2 and 1, in that order.

Suppose the tableau is not optimal and we want to find a potentially better primal feasible tableau. Some τ_s is positive.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>⊗</th>
</tr>
</thead>
<tbody>
<tr>
<td>°</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>0</td>
<td>⊗</td>
<td></td>
</tr>
</tbody>
</table>

* ... * + * ... * 1 $-\tilde{b}_0$

My tableau notation is:

+ positive entry
- negative entry
0 zero entry
⊗ nonnegative entry
⊗ nonpositive entry
* sign of entry unknown or irrelevant
⊙ pivot entry

Pivoting on any positive entry of A_s will not cause the lower right-hand entry to increase. So the objective function value of the new basic point will not be smaller than that of the old.

To ensure that the new tableau is also primal feasible, we require that all right-hand sides remain nonnegative. So if τ_{rs} is the pivot entry, we need:

$$\frac{1}{\tau_{rs}} \tilde{b}_r \geq 0$$

$$\tilde{b}_i - \frac{\tau_{is}}{\tau_{rs}} \tilde{b}_r \geq 0, \quad i \neq r$$

There is no problem with the first condition. The second condition is satisfied if $\tau_{is} \leq 0$. For all i such that $\tau_{is} > 0$ we require

$$\frac{\tilde{b}_i}{\tau_{is}} \geq \frac{\tilde{b}_r}{\tau_{rs}}.$$

70
This can be ensured by choosing \(r \) such that
\[
\frac{\bar{b}_r}{a_{rs}} = \min_{i: a_{is} > 0} \left\{ \frac{\bar{b}_i}{a_{is}} \right\}.
\]
This is called the ratio test to determine the pivot row.

Example 10.13 Tableau 5 in Example 10.3 is primal feasible. \(\bar{c}_3 \) is positive, so the tableau is not dual feasible and \(x_3 \) is a candidate for an entering variable. Therefore we wish to pivot on a positive entry of this column. Checking ratios 10/1 and 50/1 we see that we must pivot in the first row. The result is Tableau 3, which is also primal feasible. The objective function value of the corresponding BFS has strictly increased from 300 to 310. □

Here is another way to understand this pivoting process: The equations in \(T \) are equivalent to the equations in \((P) \). So \(T \) represents the following equivalent reformulation of \((P) \):
\[
\max z = \bar{b}_0 + \bar{c}^T x \\
\text{s.t. } Ax = \bar{b} \\
x \geq O
\]
If all \(\bar{c}_j \) are nonpositive, then \(\bar{x} = (\bar{x}_B, O) \) is feasible and has objective function value \(\bar{b}_0 \) since \(\bar{c}_B = O \). If \(\bar{x} \) is any other feasible solution, then \(z(\bar{x}) = \bar{b}_0 + \bar{c}^T \bar{x} \leq \bar{b}_0 \) since \(\bar{x} \geq O \) and \(\bar{c} \leq O \). Therefore \(\bar{x} \) is optimal.

Example 10.14 Consider Tableau 3 in Example 10.3. It represents the set of equations:
\[
\begin{align*}
x_3 - 3x_4 + x_5 &= 10 \\
x_2 + 2x_4 - x_5 &= 40 \\
x_1 - x_4 + x_5 &= 30 \\
-3x_4 - x_5 - z &= -310
\end{align*}
\]
Setting \(x_4 = x_5 = 0 \) yields the basic feasible solution \((30, 40, 10, 0, 0)\) with objective function value 310. The last equation implies that for any feasible point, \(z = 310 - 3x_4 - x_5 \leq 310 \), since both \(x_4 \) and \(x_5 \) must be nonnegative. Therefore the point \((30, 40, 10, 0, 0)\) is optimal since it attains the objective function value 310. □

Now suppose that there exists an index \(s \) such that \(\bar{c}_s > 0 \). Of course, \(x_s \) is a nonbasic variable. The argument in the preceding paragraph suggests that we might be able to do better than \(\bar{x} \) by using a positive value of \(x_s \) instead of setting it equal to 0. So let’s try setting
\(\tilde{x}_s = t \geq 0 \), keeping \(\tilde{x}_j = 0 \) for the other nonbasic variables, and finding the appropriate values of \(\tilde{x}_B \).

The equations of \(T \) are

\[
\begin{align*}
 x_B + \bar{N}x_N &= \bar{b} \\
x_B + \bar{x}_N - z &= -\bar{b}_0 \\
 \bar{z} &= \bar{b}_0 + \bar{x}_N^T x_N \\
\end{align*}
\]

or

\[
\begin{align*}
 x_B &= \bar{b} - \bar{N}x_N \\
 z &= \bar{b}_0 + \bar{x}_N^T x_N \\
\end{align*}
\]

Setting \(\tilde{x}_s = t \) and \(\tilde{x}_j = 0 \) for all \(j \in N \setminus \{s\} \) yields the point \(\tilde{x}(t) \) given by

\[
\tilde{x}_N \setminus \{s\} = O \\
\tilde{x}_s = t \\
\tilde{x}_B = \bar{b} - dt \\
\tilde{z} = \bar{b}_0 + \bar{c}_s t
\]

where \(d = \bar{N}_s \), and the entries of \(d \) are indexed by the basis \(B \).

We want to keep all variables nonnegative, but we want to make \(z \) large, so choose \(t \geq 0 \) as large as possible so that \(\tilde{x}_B \geq O \). Thus we want

\[
\begin{align*}
 \bar{b} - dt &\geq O \\
 \bar{b} &\geq dt \\
 \bar{b}_i &\geq d_i t, \quad i \in B
\end{align*}
\]

This last condition is automatically satisfied if \(d_i \leq 0 \), so we only have to worry about the case when \(d_i > 0 \). Then we must ensure that

\[
\frac{\bar{b}_i}{d_i} \geq t \text{ if } d_i > 0.
\]

So choose

\[
t = \min_{i : d_i > 0} \left\{ \frac{\bar{b}_i}{d_i} \right\}.
\]

If this minimum is attained when \(i = r \), then with this choice of \(t \) the variable \(x_r \) takes the value 0. This suggests that we drop \(r \) from the basis \(B \) and replace it with \(s \), getting the new basis \(\tilde{B} = (B \setminus r) \cup \{s\} \), which we write \(B - r + s \) for short. \(x_s \) is called the entering variable and \(x_r \) is called the leaving variable. To obtain the basic tableau for \(\tilde{B} \), pivot on the entry \(d_r \) in the tableau \(T \). This is the entry in column \(s \) of \(T \) in the row associated with variable \(x_r \). The resulting basic feasible tableau \(\tilde{T} \) has associated BFS \(\tilde{x} \) such that \(\tilde{x}_j = 0 \) for \(j \not\in \tilde{B} \). There is a unique such point with this property; hence it must be the one obtained by choosing \(t \) according to the method above.
Example 10.15 Let’s take the equations associated with Tableau 5 of Example 10.3:

\[
\begin{align*}
 x_3 - 3x_4 + x_5 &= 10 \\
 x_2 + x_3 - x_4 &= 50 \\
 x_1 - x_3 + 2x_4 &= 20 \\
 x_3 - 6x_4 - z &= -300
\end{align*}
\]

Solving for the basic variables in terms of the nonbasic variables:

\[
\begin{align*}
 x_5 &= 10 - x_3 + 3x_4 \\
 x_2 &= 50 - x_3 + x_4 \\
 x_1 &= 20 + x_3 - 2x_4 \\
 z &= 300 + x_3 - 6x_4
\end{align*}
\]

Setting the nonbasic variables to zero gives the associated basic feasible solution \((20, 50, 0, 0, 10)\) with objective function value 300. Since the coefficient of \(x_3\) in the expression for \(z\) is positive, we try to increase \(x_3\) while maintaining feasibility of the resulting point. Keep \(x_4 = 0\) but let \(x_3 = t\). Then

\[
\begin{bmatrix}
 \bar{x}_4 \\
 \bar{x}_3 \\
 \bar{x}_2 \\
 \bar{x}_1 \\
 \bar{z}
\end{bmatrix} =
\begin{bmatrix}
 10 \\
 50 \\
 20 \\
 1 \\
 -1
\end{bmatrix} t +
\begin{bmatrix}
 10 \\
 50 \\
 20 \\
 1 \\
 -1
\end{bmatrix} t
\]

These correspond to Equations (4). The maximum value of \(t\) that maintains the nonnegativity of the basic variables is 10. Setting \(t = 10\) yields the new feasible point \((30, 40, 10, 0, 0)\) with objective function value 310. Since \(x_5\) is now zero and \(x_3\) is now positive, \(x_3\) is the entering variable, \(x_5\) is the leaving variable, and our new basis becomes \((3, 2, 1)\). □

Suppose there are several choices of entering variable. Which one should be chosen? One rule is to choose \(s\) such that \(c_s\) is maximum. This is the largest coefficient rule and chooses the entering variable with the largest rate of change of objective function value as a function of \(x_s\). Another rule is to choose \(s\) that results in the largest total increase in objective function value upon performing the pivot. This is the largest increase rule. A third rule is to choose the smallest \(s\) such that \(c_s\) is positive. This is part of the smallest subscript rule, mentioned below. For a discussion of some of the relative merits and disadvantages of these rules, see Chvátal.

What if there are several choices of leaving variable? For now, you can choose to break ties arbitrarily, or perhaps choose the variable with the smallest subscript (see below).
10.3 The (Primal) Simplex Method

The essential idea of the (primal) simplex method is this: from a basic feasible tableau, pivot in the above manner until a basic optimal tableau is reached. But there are some unresolved issues:

1. How can we be certain the algorithm will terminate?

2. How can we find an initial basic feasible tableau?

Let’s first consider the possibility that we have a basic feasible tableau such that there exists an \(s \) for which \(\overline{c}_s > 0 \), but \(d \leq 0 \).

\[
\begin{array}{ccc}
\Theta & 0 & \oplus \\
\vdots & \vdots & \vdots \\
\Theta & 0 & \oplus \\
\ast & \ast & \ast \\
\ast & \ast & \ast \\
& 1 & -b_0
\end{array}
\]

In this case, we can choose \(t \) to be any positive number, and the point given in (4) will be feasible. Further, \(\tilde{z} \to \infty \) as \(t \to \infty \), so it is clear that \((P) \) is an unbounded LP. Indeed, it is easy to check directly that \(\overline{w} = \tilde{x}(1) - \overline{x} \) is a solution to \((UP) \). \(\overline{w} \) satisfies:

\[
\begin{align*}
\overline{w}_{N\setminus\{s\}} &= O \\
\overline{w}_s &= 1 \\
\overline{w}_B &= -d
\end{align*}
\]

You can see that \(A\overline{w} = O \) (and so \(Aw = O \)), \(\overline{w} \geq O \), and \(\overline{c}^T \overline{w} = \overline{c}_s > 0 \). You can verify this directly from the tableau, or by using the fact that \(\overline{w} = \tilde{x}(1) - \overline{x} \). Consequently, \(c^T \overline{w} \) is also positive, for we have \(0 < \overline{c}_s = (c^T - \overline{c}^T A)\overline{w} = c^T \overline{w} - \overline{c}^T A\overline{w} = c^T \overline{w} - \overline{c}^T O = c^T \overline{w} \).

Geometrically, when the above situation occurs, the BFS \(\overline{x} \) corresponds to a corner point of the feasible region, and the vector \(\overline{w} \) points in the direction of an unbounded edge of the feasible region.

Example 10.16 Suppose we are solving the linear program

\[
\begin{align*}
\text{max} & \quad 5x_1 + 4x_2 \\
\text{s.t.} & \quad -x_1 - 2x_2 \leq -120 \\
& \quad -x_1 - x_2 \leq -70 \\
& \quad -2x_1 - x_2 \leq -100 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Inserting slack variables yields the basic tableau:

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The tableau for the basis (1, 4, 5):

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-6</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

has associated basic feasible solution (120, 0, 0, 50, 140) with objective function value 600. We see that c_3 is positive but there is no positive pivot entry in that column. Writing out the equations, we get:

\[
\begin{align*}
\bar{x}_1 + 2x_2 - x_3 &= 120 \\
x_2 - x_3 + x_4 &= 50 \\
3x_2 - 2x_3 + x_5 &= 140 \\
-6x_2 + 5x_3 - z &= -600
\end{align*}
\]

Solving for the basic variables in terms of the nonbasic variables:

\[
\begin{align*}
\bar{x}_1 &= 120 - 2x_2 + x_3 \\
x_4 &= 50 - x_2 + x_3 \\
x_5 &= 140 - 3x_2 + 2x_4 \\
z &= 600 - 6x_2 + 5x_3
\end{align*}
\]

Setting the nonbasic variables to zero gives the associated basic feasible solution (120, 0, 0, 50, 140) with objective function value 600. Since the coefficient of x_3 in the expression for z is positive, we try to increase x_3 while maintaining feasibility of the resulting point. Keep $x_2 = 0$ but let $x_3 = t$. Then

\[
\begin{align*}
\bar{x}_2 &= 0 \\
\bar{x}_3 &= t \\
\bar{x}_4 &= \begin{bmatrix} 120 \\ 50 \\ 140 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} t \\
\tilde{z} &= 600 + 5t
\end{align*}
\]
The number \(t \) can be made arbitrarily large without violating nonnegativity, so the linear program is unbounded. We can rewrite the above equations as

\[
\begin{bmatrix}
\tilde{x}_1 \\
\tilde{x}_2 \\
\tilde{x}_3 \\
\tilde{x}_4 \\
\tilde{x}_5
\end{bmatrix} =
\begin{bmatrix}
120 \\
0 \\
0 \\
50 \\
140
\end{bmatrix} +
\begin{bmatrix}
1 \\
0 \\
1 \\
1 \\
2
\end{bmatrix} t
\]

The vector \(\overline{w} \) is \([1, 0, 1, 1, 2]^T\).

We can confirm that \(\overline{w} \) is feasible for \((UP)\):

\[
\begin{align*}
-\overline{w}_1 - 2\overline{w}_2 + \overline{w}_3 &= 0 \\
-\overline{w}_1 - \overline{w}_2 + \overline{w}_4 &= 0 \\
-2\overline{w}_1 - \overline{w}_2 + \overline{w}_5 &= 0 \\
5\overline{w}_1 + 4\overline{w}_2 &> 0
\end{align*}
\]

You should graph the original LP and confirm the above results geometrically. \(\square \)

In general, regardless of objective function, if \(B \) is any basis and \(s \) is any element not in \(B \), there is a unique way of writing column \(s \) as a linear combination of the columns of \(B \). That is to say, there is a unique vector \(\overline{w} \) such that \(A\overline{w} = O \), \(\overline{w}_s = 1 \) and \(\overline{w}_j = 0 \) for \(j \not\in B + s \). When you have such a vector \(\overline{w} \) that is also nonnegative, then \(\overline{w} \) is called a basic feasible direction (BFD). The above discussion shows that if the simplex method halts by discovering that \((P)\) is unbounded, it finds a BFD with positive objective function value.

Now consider the possibility that we never encounter the situation above. Hence a pivot is always possible. There is only a finite number of bases, so as long as the value of the objective function increases with each pivot, we will never repeat tableaux and must therefore terminate with an optimal tableau.

Unfortunately, it may be the case that \(\overline{b}_i = 0 \) for some \(i \) for which \(d_i > 0 \), forcing \(t = 0 \). In this case, the new tableau \(\tilde{T} \) and the old tableau \(T \) correspond to different bases, but have the same BFS since none of the values of any of the variables change during the pivot. Such a pivot is called degenerate, and the associated BFS is a degenerate point.

Example 10.17 Here is an example from Chvátal. Suppose we have the tableau

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>(x_7)</th>
<th>(-z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>-5.5</td>
<td>-2.5</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>-1.5</td>
<td>-0.5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>-57</td>
<td>-9</td>
<td>-24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
with basis \((5,6,7)\), associated basic feasible solution \((0,0,0,0,0,1)\) and objective function value 0. We wish to pivot in column 1, but the ratios \(0/0.5\), \(0/0.5\), and \(1/1\) force us to pivot in rows 5 or 6 (we are labeling the rows by the elements of the basis). We will choose to pivot in the row with the smallest label. The resulting tableau is different:

\[
\begin{array}{cccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & -z \\
 1 & -11 & -5 & 18 & 2 & 0 & 0 & 0 \\
 0 & 4 & 2 & -8 & -1 & 1 & 0 & 0 \\
 0 & 11 & 5 & -18 & -2 & 0 & 1 & 0 \\
 0 & 53 & 41 & -204 & -20 & 0 & 0 & 1 \\
\end{array}
\]

and the associated basis is now \((1,6,7)\), but the corresponding basic feasible solution is still \((0,0,0,0,0,0,1)\). □

It is conceivable that a sequence of degenerate pivots might eventually bring you back to a tableau that was seen before. This can in fact occur, and is known as \textit{cycling}.

\textbf{Example 10.18} Continuing the example from Chvátal, we will pivot in the column with the most positive \(c_s\). If there is a tie for the leaving variable, we always choose the variable with the smallest index. Starting from the second tableau above, we generate the following sequence of tableaux:

\[
\begin{array}{cccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & -z \\
 1 & 0 & 0.5 & -4 & -0.75 & 2.75 & 0 & 0 \\
 0 & 1 & 0.5 & -2 & -0.25 & 0.25 & 0 & 0 \\
 0 & 0 & -0.5 & 4 & 0.75 & -2.75 & 1 & 0 \\
 0 & 0 & 14.5 & -98 & -6.75 & -13.25 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & -z \\
 2 & 0 & 1 & -8 & -1.5 & 5.5 & 0 & 0 \\
 -1 & 1 & 0 & 2 & 0.5 & -2.5 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 -29 & 0 & 0 & 18 & 15 & -93 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & -z \\
 -2 & 4 & 1 & 0 & 0.5 & -4.5 & 0 & 0 \\
 -0.5 & 0.5 & 0 & 1 & 0.25 & -1.25 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 -20 & -9 & 0 & 0 & 10.5 & -70.5 & 0 & 1 \\
\end{array}
\]

77
We have cycled back to the original tableau! □

There are several ways to avoid cycling. One is a very simple rule called Bland’s rule or the smallest subscript rule, which is described and proved in Chvátal. The rule is: If there are several choices of entering variable (i.e., several variables with positive entry in the last row), choose the variable with the smallest subscript. If there are several choices of leaving variable (i.e., several variables for which the minimum ratio of the ratio test is attained), choose the variable with the smallest subscript. If this rule is applied, no tableau will ever be repeated.

Example 10.19 Applying Bland’s rule beginning with the tableau of Example 10.17 results in the same sequence of tableaux as before in Examples 10.17 and 10.18, except that when pivoting in the penultimate tableau, \(x_1 \) will enter the basis and \(x_4 \) will leave the basis. This results in the tableau

\[
\begin{array}{cccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & -z \\
 -4 & 8 & 2 & 0 & 1 & -9 & 0 & 0 \\
 0.5 & -1.5 & -0.5 & 1 & 0 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 22 & -93 & -21 & 0 & 0 & 24 & 0 & 1 \\
\end{array}
\]

Now \(x_3 \) enters the basis and \(x_7 \) leaves, which yields:

\[
\begin{array}{cccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & -z \\
 0 & -4 & -2 & 8 & 1 & -1 & 0 & 0 \\
 1 & -3 & -1 & 2 & 0 & 2 & 0 & 0 \\
 0 & 3 & 1 & -2 & 0 & -2 & 1 & 0 \\
 0 & -27 & 1 & -44 & 0 & -20 & 0 & 1 \\
\end{array}
\]

This tableau is optimal. □
Cycling can also be avoided by a *perturbation* technique. Adjoin an indeterminate ε to the field \mathbb{R}. Consider the field $\mathbb{R}(\varepsilon)$ of rational functions in ε. We can make this an ordered field by defining

$$a_0 + a_1 \varepsilon + a_2 \varepsilon^2 + \cdots + a_k \varepsilon^k < b_0 + b_1 \varepsilon + b_2 \varepsilon^2 + \cdots + b_k \varepsilon^k$$

if there exists $0 \leq j < k$ such that $a_i = b_i$ for all $0 \leq i \leq j$ and $a_{j+1} < b_{j+1}$. (Think of ε as being an infinitesimally small positive number if you dare.)

We solve (P) by replacing b with $b + (\varepsilon, \varepsilon^2, \ldots, \varepsilon^m)^T$ and noting that any tableau which is primal (respectively, dual) feasible with respect to $\mathbb{R}(\varepsilon)$ is also primal (respectively, dual) feasible with respect to \mathbb{R} when ε is replaced by 0.

Note that expressions involving ε will only appear in the last column of a basic tableau—pivoting won’t cause any ε’s to pop up anywhere else.

Example 10.20 Let’s try this out on Chvátal’s example. Our starting tableau becomes:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>-5.5</td>
<td>-2.5</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>ε</td>
</tr>
<tr>
<td>0.5</td>
<td>-1.5</td>
<td>-0.5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>ε^2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$1 + \varepsilon^3$</td>
</tr>
<tr>
<td>10</td>
<td>-57</td>
<td>-9</td>
<td>-24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Pivot in column x_1. Check ratios: $\varepsilon/0.5 = 2\varepsilon$, $\varepsilon^2/0.5 = 2\varepsilon^2$, $(1+\varepsilon^3)/1 = 1+\varepsilon^3$. The second ratio is smaller, so we choose x_6 to leave, getting:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-4</td>
<td>-2</td>
<td>8</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>$\varepsilon - \varepsilon^2$</td>
</tr>
<tr>
<td>1</td>
<td>-3</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>$2\varepsilon^2$</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
<td>-2</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>$1 - 2\varepsilon^2 + \varepsilon^3$</td>
</tr>
<tr>
<td>0</td>
<td>-27</td>
<td>1</td>
<td>-44</td>
<td>0</td>
<td>-20</td>
<td>0</td>
<td>$1 - 20\varepsilon^2$</td>
</tr>
</tbody>
</table>

Now pivot in column x_3. You must pivot x_7 out, which yields:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>-5</td>
<td>2</td>
<td>$2 + \varepsilon - 5\varepsilon^2 + 2\varepsilon^3$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$1 + \varepsilon^3$</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
<td>-2</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>$1 - 2\varepsilon^2 + \varepsilon^3$</td>
</tr>
<tr>
<td>0</td>
<td>-30</td>
<td>0</td>
<td>-42</td>
<td>0</td>
<td>-18</td>
<td>-1</td>
<td>$1 - 18\varepsilon^2 - \varepsilon^3$</td>
</tr>
</tbody>
</table>

This tableau is optimal. You can set $\varepsilon = 0$ to see the final table for the original, unperturbed problem. The optimal solution is $(1, 0, 1, 0, 2, 0, 0)$ with objective function value 1. □
To show that cycling won’t occur under the perturbation method, it suffices to show that $\overline{b} > 0$ in every basic feasible tableau T, for then the objective function value will strictly increase at each pivot.

Assume that B is a basis for which $\overline{b}_k = 0$ for some k. Then $B^{-1}(b + (\varepsilon, \ldots, \varepsilon^m)^T)$ is zero in the kth component. Let p^T be the kth row of B^{-1}. Then $p^T(b + (\varepsilon, \ldots, \varepsilon^m)^T) = 0$ in $\mathbb{R}(\varepsilon)$. So $p^Tb + p^T\varepsilon_1\varepsilon + p^T\varepsilon_2\varepsilon^2 + \cdots + p^T\varepsilon_m\varepsilon^m = 0$. (Remember, ε_i is the standard unit vector with all components equal to 0 except for a 1 in the ith component.) Therefore $p^T\varepsilon_i = 0$ for all i, which in turn implies that $p^T = O^T$. But this is impossible since p^T is a row of an invertible matrix.

Geometrically we are moving the constraining hyperplanes of (\hat{P}) a “very small” amount parallel to themselves so that we avoid any coincidences of having more than n of them passing through a common point.

Now we know that using this rule will not cause any tableau (i.e., basis) to repeat. Since there is a finite number of bases, we will eventually discover a tableau that is optimal, or else we will discover a tableau that demonstrates that (P) is unbounded.

Now what about getting that initial primal feasible tableau? If $b \geq O$ there is no problem because we can use the initial tableau associated with the equations in (P) itself—our basis consists of the set of slack variables. The GGMC problem provides a good example of this situation.

Example 10.21 Pivoting from the initial tableau to optimality in the GGMC problem:

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>-0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>-0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>-2.5</td>
<td>1</td>
<td>-250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>-310</td>
</tr>
</tbody>
</table>
What if at least one component of b is negative (as in Example 10.16? The clever idea is to introduce a new nonnegative variable x_0. This variable is called an artificial variable. Put it into each of the equations of (P) with a coefficient of -1, getting the system

$$\begin{align*}
Ax - ex_0 &= b \\
x &\geq 0, \quad x_0 \geq 0
\end{align*}$$

(5)

Now it is obvious (isn’t it?) that (P) is feasible if and only if (5) has a feasible solution in which $x_0 = 0$. So let’s try to solve the following Phase I problem:

$$\begin{align*}
\max \quad & -x_0 \\
\text{s.t.} \quad & Ax - ex_0 = b \\
& x \geq 0, \quad x_0 \geq 0
\end{align*}$$

Find slack variable x_{n+k}, such that b_k is most negative. Then $\{n+1, n+2, \ldots, n+m\} + 0 - (n+k)$ is a feasible basis. You can see that the corresponding basic point π is nonnegative since

$$\begin{align*}
\pi_0 &= -b_k \\
\pi_{n+i} &= b_i - b_k, \quad i \neq k \\
\pi_{n+k} &= 0 \\
\pi_j &= 0, \quad j = 1, \ldots, n
\end{align*}$$

One pivot moves you to this basis from the basis consisting of the set of slack variables (which is not feasible).

Now you have a basic feasible tableau for the Phase I problem, so you can proceed to solve it. While doing so, choose x_0 as a leaving variable if and as soon as you are permitted to do so and then immediately stop since x_0 will have value 0.

Because x_0 is a nonnegative variable, the Phase I problem cannot be unbounded. So there are two possibilities:

1. If the optimal value of the Phase I problem is negative (i.e., x_0 is positive at optimality), then there is no feasible solution to this problem in which x_0 is zero; therefore (P) is infeasible.

2. If, on the other hand, the optimal value of the Phase I problem is zero, then it must have been the case that x_0 was removed from the basis at the final pivot; therefore, there is a feasible solution to this problem in which x_0 is zero, and moreover the final basis B is a primal feasible basis for (P). If this happens, drop the x_0 column and
replace the final row of the tableau by the row \((c^T, 1, 0)\). Pivot again on the 1’s in the basic columns to make \(c_T^T = O^T\). (Alternatively, calculate \(c^T - c_T^T B^{-1}A\). This isn’t hard since \(B^{-1}A\) is already sitting in the final tableau.) Now you have a basic feasible tableau for \((P)\). Proceed to solve \((P)\)—this part is called Phase II.

Example 10.22 We apply the Phase I procedure to the following linear program:

\[
\begin{align*}
\text{max } & 5x_1 + 4x_2 \\
\text{s.t. } & x_1 + 2x_2 \leq 120 \\
& -x_1 - x_2 \leq -70 \\
& -2x_1 - x_2 \leq -100 \\
& x_1, x_2 \geq 0
\end{align*}
\]

The Phase I problem is:

\[
\begin{align*}
\text{max } & -x_0 \\
\text{s.t. } & x_1 + 2x_2 + x_3 - x_0 = 120 \\
& -x_1 - x_2 + x_4 - x_0 = -70 \\
& -2x_1 - x_2 + x_5 - x_0 = -100 \\
& x_1, x_2, x_3, x_4, x_5, x_0 \geq 0
\end{align*}
\]

The first tableau is:

\[
\begin{array}{ccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_0 & -z \\
\hline
 1 & 2 & 1 & 0 & 0 & -1 & 0 & 120 \\
-1 & -1 & 0 & 1 & 0 & -1 & 0 & -70 \\
-2 & -1 & 0 & 0 & 1 & -1 & 0 & -100 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\
\end{array}
\]

The preliminary pivot takes place in column \(x_0\) and the third row (since the right-hand side \(-100\) is the most negative):

\[
\begin{array}{ccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_0 & -z \\
\hline
 3 & 3 & 1 & 0 & -1 & 0 & 0 & 220 \\
 1 & 0 & 0 & 1 & -1 & 0 & 0 & 30 \\
 2 & 1 & 0 & 0 & -1 & 1 & 0 & 100 \\
 2 & 1 & 0 & 0 & -1 & 0 & 1 & 100 \\
\end{array}
\]

Now the tableau is primal feasible, and we proceed to solve the Phase I problem:

\[
\begin{array}{ccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_0 & -z \\
\hline
 0 & 3 & 1 & -3 & 2 & 0 & 0 & 130 \\
 1 & 0 & 0 & 1 & -1 & 0 & 0 & 30 \\
 0 & 1 & 0 & -2 & 1 & 1 & 0 & 40 \\
 0 & 1 & 0 & -2 & 1 & 0 & 1 & 40 \\
\end{array}
\]

82
This tableau is optimal with objective function value 0, so the original LP is feasible. We now delete column \(x_0 \) and replace the last row with the original objective function:

\[
\begin{array}{cccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
 0 & 0 & 1 & 3 & -1 & -3 & 0 & 10 \\
 1 & 0 & 0 & 1 & -1 & 0 & 0 & 30 \\
 0 & 1 & 0 & -2 & 1 & 1 & 0 & 40 \\
 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\
\end{array}
\]

We must perform preliminary pivots in columns \(x_1 \) and \(x_2 \) to bring the tableau back into basic form:

\[
\begin{array}{cccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
 0 & 0 & 1 & 3 & -1 & 0 & 10 \\
 1 & 0 & 0 & 1 & -1 & 0 & 30 \\
 0 & 1 & 0 & -2 & 1 & 0 & 40 \\
 5 & 4 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]

We now have a basic feasible tableau and may begin a sequence of pivots to solve the Phase II problem:

\[
\begin{array}{cccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
 0 & 0 & 1 & 3 & -1 & 0 & 10 \\
 1 & 0 & 0 & 1 & -1 & 0 & 30 \\
 0 & 1 & 0 & -2 & 1 & 0 & 40 \\
 0 & 4 & 0 & -5 & 5 & 1 & -150 \\
\end{array}
\]

\[
\begin{array}{cccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
 0 & 0 & 1 & 3 & -1 & 0 & 10 \\
 1 & 0 & 0 & 1 & -1 & 0 & 30 \\
 0 & 1 & 0 & -2 & 1 & 0 & 40 \\
 0 & 0 & 0 & 3 & 1 & 1 & -310 \\
\end{array}
\]

We now have a basic feasible tableau and may begin a sequence of pivots to solve the Phase II problem:
The optimal solution is $(120, 0, 0, 50, 140)$ with an objective function value of 600. \qed

Example 10.23 Apply the Phase I procedure to the following problem:

\[
\begin{align*}
\text{max } & \quad 5x_1 + 4x_2 \\
\text{s.t. } & \quad -x_1 - 2x_2 \leq -120 \\
& \quad x_1 + x_2 \leq 70 \\
& \quad -2x_1 - x_2 \leq -100 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

The initial tableau is:

\[
\begin{array}{cccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_0 & -z \\
\hline
-1 & -2 & 1 & 0 & 0 & -1 & 0 \quad -120 \\
1 & 1 & 0 & 1 & 0 & -1 & 0 \quad 70 \\
-2 & -1 & 0 & 0 & 1 & -1 & 0 \quad -100 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 \quad 0 \\
\end{array}
\]

After the preliminary pivot, the result is:

\[
\begin{array}{cccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_0 & -z \\
\hline
1 & 2 & -1 & 0 & 0 & 1 & 0 \quad 120 \\
2 & 3 & -1 & 1 & 0 & 0 & 0 \quad 190 \\
-1 & 1 & -1 & 0 & 1 & 0 & 0 \quad 20 \\
1 & 2 & -1 & 0 & 0 & 0 & 1 \quad 120 \\
\end{array}
\]

Two pivots solve the Phase I problem:

\[
\begin{array}{cccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_0 & -z \\
\hline
0 & 1/2 & -1/2 & -1/2 & 0 & 1 & 0 \quad 25 \\
1 & 3/2 & -1/2 & 1/2 & 0 & 0 & 0 \quad 95 \\
0 & 5/2 & -3/2 & 1/2 & 1 & 0 & 0 \quad 115 \\
0 & 1/2 & -1/2 & -1/2 & 0 & 0 & 1 \quad 25 \\
\end{array}
\]
Since the optimal objective function value is nonzero, the original LP is infeasible. □

Some comments: In the form that I have described it, the simplex method behaves poorly numerically and is not really implemented in this manner. Also, it is possible to have an exponential number of pivots in terms of the number of variables or constraints. See Chvátal for more details on resolving the first problem, and a discussion of the second in which a slightly skewed hypercube wreaks havoc with reasonable pivot rules.

The existence of the simplex method, however, gives us a brand new proof of Strong Duality! Just observe that the algorithm (1) terminates by demonstrating that \((\hat{P})\), and hence \((\hat{\hat{P}})\), is infeasible; (2) terminates by demonstrating that \((P)\), and hence \((\hat{P})\), is unbounded; or (3) terminates with a dual pair of optimal solutions to \((\hat{P})\) and \((\hat{D})\) with equal objective function values. In fact, we can conclude something stronger:

Theorem 10.24 If \((P)\) is feasible, then it has a basic feasible solution. If \((P)\) is unbounded, then it has a basic feasible direction with positive objective function value. If \((P)\) has an optimal solution, then it has an optimal basic feasible solution.

Suppose we have found optimal \(\overline{x}\) and \(\overline{y}\) from the optimal final tableau of the simplex method. We already know that they have the same objective function values, so clearly they must also satisfy complementary slackness. This can be seen directly: Suppose \(\overline{x}_j > 0\). Then \(j \in B\). So \(c_j - \overline{y}^T A_j = 0\). Also note that if \(\overline{y}_i > 0\), then \(0 - \overline{y}_i^T e_i < 0\), hence \(n + i \in N\). Therefore \(x_{n+i} = 0\) and the \(i\)th constraint in \((\hat{P})\) is satisfied with equality. So the corresponding solutions of \((\hat{P})\) and \((\hat{D})\) also are easily seen to satisfy complementary slackness. The simplex method in effect maintains primal feasibility, enforces complementary slackness, and strives for dual feasibility.
11 Exercises: The Simplex Method

These questions concern the pair of dual linear programs

\[
\begin{align*}
\text{max } & \hat{c}^T \hat{x} \\
\text{s.t. } & \hat{A} \hat{x} \leq b \\
& \hat{x} \geq O
\end{align*}
\]

\[
\begin{align*}
\text{min } & \hat{y}^T b \\
\text{s.t. } & \hat{y}^T \hat{A} \geq \hat{c}^T \\
& \hat{y} \geq O
\end{align*}
\]

and the pair of dual linear programs

\[
\begin{align*}
\text{max } & c^T x \\
\text{s.t. } & Ax = b \\
& x \geq O
\end{align*}
\]

\[
\begin{align*}
\text{min } & y^T b \\
\text{s.t. } & y^T A \geq c^T \\
& y \geq O
\end{align*}
\]

where \(A\) is \(m \times n\) and \((P)\) is obtained from \((\hat{P})\) by introducing \(m\) slack variables.

Exercise 11.1 True or false: Every feasible solution of \((P)\) is a BFS of \((P)\). If true, prove it; if false, give a counterexample. \(\square\)

Exercise 11.2 True or false: Suppose \(\bar{T}\) is a basic feasible tableau with associated BFS \(\bar{x}\). Then \(\bar{x}\) is optimal if and only if \(c_j \leq O\) for all \(j\). (This is Chvátal 3.10.) If true, prove it; if false, give a counterexample. \(\square\)

Exercise 11.3 Prove that the number of basic feasible solutions for \((P)\) is at most \(\binom{m+n}{m}\). Can you construct an example in which this number is achieved? \(\square\)

Exercise 11.4

1. Geometrically construct a two-variable LP \((\hat{P})\) in which the same BFS \(\bar{x}\) is associated with more than one feasible basis.

2. Do the same as in the previous problem, but in such a way that all of the bases associated with \(\bar{x}\) are also dual feasible.

3. Do the same as in the previous problem, but in such a way that at least one of the bases associated with \(\bar{x}\) is dual feasible, while at least one is not.

\(\square\)

Exercise 11.5 Geometrically construct a two-variable LP \((\hat{P})\) that has no primal feasible basis and no dual feasible basis. \(\square\)
Exercise 11.6 Geometrically construct a two-variable LP (\(\tilde{P}\)) such that both the primal and the dual problems have more than one optimal solution. □

Exercise 11.7

1. Suppose that \(A\) is a matrix with integer entries and \(B\) is a basis such that \(A_B\) has determinant \(-1\) or \(+1\). Assume that \(b\) also has integer entries. Prove that the solution to \(A_Bx_B = b\) is an integer vector.

2. Suppose \(\hat{A}\) is a matrix with integer entries such that every square submatrix (of whatever size) has determinant \(0, -1\) or \(+1\). Assume that \(b\) also has integer entries. Prove that if \((P)\) has an optimal solution, then there is an optimal integer solution \(x^*\).

□

Exercise 11.8

1. For variable cost coefficients \(c\), consider the function \(z^*(c)\), which is defined to be the optimal objective function value of \((P)\) as a function of \(c\). Take the domain of \(z^*(c)\) to be the points \(c\) such that \((P)\) has a finite optimal objective function value. Prove that there exists a finite set \(S\) such that \(z^*(c)\) is of the form

\[z^*(c) = \max_{x \in S} \{c^Tx\} \]

on its domain.

2. For variable right hand sides \(b\), consider the function \(z^*(b)\), which is defined to be the optimal objective function value of \((P)\) as a function of \(b\). Take the domain of \(z^*(b)\) to be the points \(b\) such that \((P)\) has a finite optimal objective function value. Prove that there exists a finite set \(T\) such that \(z^*(b)\) is of the form

\[z^*(b) = \min_{y \in T} \{y^Tb\} \]

on its domain.

□

Exercise 11.9 Suppose that \(\hat{A}\) and \(b\) have integer entries, \(B\) is a feasible basis for \((P)\), and \(\overline{x}\) is the associated BFS. Let

\[\alpha = \max_{i,j} |a_{ij}| \]
\[\beta = \max_i |b_i| \]

Prove that the absolute value of each entry of \(B^{-1}\) is no more than \((m - 1)!\alpha^{m-1}\). Prove that \(|\overline{x}_j| \leq m!\alpha^{m-1}\beta\) for all \(j\) (Papadimitriou and Steiglitz). □
Exercise 11.10 Suppose x is feasible for (P). We say that x is an extreme point of (P) if there exists no nonzero vector w such that $x + w$ and $x - w$ are both feasible for (P). Illustrate this definition geometrically. Define a point x to be a convex combination of points x^1, x^2 if there exists a real number t, $0 \leq t \leq 1$, such that $x = tx^1 + (1 - t)x^2$. The support of a point x is the set of indices $\text{supp} (x) = \{ i : x_i \neq 0 \}$.

Prove that the following are equivalent for a feasible point x of (P):

1. x is a BFS of (P).
2. x is an extreme point of (P).
3. x cannot be written as a convex combination of any two other feasible points of (P), both different from x.
4. The set of column vectors $\{ A_i : i \in \text{supp} (x) \}$ is linearly independent.

Exercise 11.11 Suppose x is feasible for (P). We say that x is an exposed point of (P) if there exists an objective function $d^T x$ such that x is the unique optimal solution to

$$\begin{align*}
\max & \quad d^T x \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}$$

Illustrate this definition geometrically. Prove that x is an exposed point of (P) if and only if x is a BFS of (P).

Exercise 11.12 Suppose z is a nonzero vector in \mathbb{R}^n. Define z to be a nonnegative combination of vectors z^1, z^2 if there exist nonnegative real numbers t_1, t_2 such that $z = t_1z^1 + t_2z^2$. Call z an extreme vector of (P) if it is a nonzero, nonnegative solution to $Az = O$, and z cannot be expressed as a nonnegative combination of any two other nonnegative solutions z^1, z^2 to $Az = O$ unless both z^1, z^2 are themselves nonnegative multiples of z. The support of a vector z is the set of indices $\text{supp} (z) = \{ i : z_i \neq 0 \}$.

Prove that the following are equivalent for a nonzero, nonnegative solution z to $Az = O$:

1. z is a positive multiple of a basic feasible direction for (P).
2. z is an extreme vector for (P).
3. The set of column vectors $\{ A_i : i \in \text{supp} (z) \}$ is linearly dependent, but dropping any one vector from this set results in a linearly independent set.
Exercise 11.13 Prove directly (without the simplex method) that if \((P)\) has a feasible solution, then it has a basic feasible solution. Hint: If \(\pi\) is feasible and not basic feasible, find an appropriate solution to \(A\pi = O\) and consider \(\pi \pm \bar{\pi}\). Similarly, prove directly that if \((P)\) has an optimal solution, then it has an optimal basic feasible solution.

Exercise 11.14 True or false: If \((P)\) and \((D)\) are both feasible, then there always exist optimal basic feasible solutions \(\pi\) and \(\bar{y}\) to \((P)\) and \((D)\), respectively, that satisfy strong complementary slackness. If true, prove it; if false, give a counterexample.

Exercise 11.15 Suppose we start with a linear program

\[
\begin{align*}
\text{max } c^T x \\
\text{s.t. } A'x' &\leq b \\
x'_1 \text{ unrestricted} \\
x'_j &\geq O, \ j = 2, \ldots n
\end{align*}
\]

and convert it into a problem in standard form by making the substitution \(x'_1 = u_1 - v_1\), where \(u_1, v_1 \geq 0\). Prove that the simplex method will not produce an optimal solution in which both \(u_1\) and \(v_1\) are positive.

Exercise 11.16 Suppose \((\hat{P})\) is infeasible and this is discovered in Phase I of the simplex method. Use the final Phase I tableau to find a solution to

\[
\begin{align*}
y^T\hat{A} &\geq O^T \\
y^Tb &< 0 \\
y &\geq O
\end{align*}
\]

Exercise 11.17 Chvátal, problems 2.1–2.2, 3.1–3.9, 5.2. Note: You need to read the book in order to do problems 3.3–3.7.
12 The Simplex Method—Further Considerations

12.1 Uniqueness

Suppose that B is an optimal basis with associated \mathbf{T}, \mathbf{x}, and \mathbf{y}. Assume that $c_j < 0$ for all $j \in N$. Then \mathbf{x} is the unique optimal solution to (P). Here are two ways to see this:

1. We know that any optimal \tilde{x} must satisfy complementary slackness with y. But $y^T A_j > c_j$ for all $j \in N$ since $\mathbf{c}_j < 0$. So $\tilde{x}_j = 0$ for all $j \in N$. Hence $\tilde{x}_N = \mathbf{x}_N$. Also $B\tilde{x}_B = \mathbf{b}$, so $\tilde{x}_B = B^{-1}b = \mathbf{x}_B$. So $\tilde{x} = \mathbf{x}$.

2. Assume that \tilde{x} is optimal. If $\tilde{x}_N \neq \mathbf{0}$, then $\tilde{z} = \mathbf{z} + \mathbf{c}^T \tilde{x} = \mathbf{z} + \mathbf{c}_N^T \tilde{x}_N < \mathbf{z}$ since $\mathbf{c}_N < \mathbf{0}$. So $\tilde{x}_N = \mathbf{0}$, and we again are able to conclude that $\tilde{x}_B = \mathbf{x}_B$ and so $\tilde{x} = \mathbf{x}$.

Exercise 12.1 Suppose that B is an optimal basis with associated \mathbf{T}, \mathbf{x}, and \mathbf{y}.

1. Assume that \mathbf{x} is the unique optimal solution to (P) and that $\mathbf{b} > \mathbf{0}$. Prove that $\mathbf{c}_j < 0$ for all $j \in N$.

2. Construct an example in which \mathbf{x} is the unique optimal solution to (P), $\mathbf{b} \neq \mathbf{0}$, and $\mathbf{c}_N \neq \mathbf{0}$.

Exercise 12.2 Suppose again that B is an optimal basis with associated \mathbf{T}, \mathbf{x}, and \mathbf{y}. Assume that $\mathbf{b} > \mathbf{0}$. Prove that \mathbf{y} is the unique optimal solution to (D). □

12.2 Revised Simplex Method

In practice we do not really want or need all of the entries of a tableau \mathbf{T}. Let us assume we have some method of solving nonsingular systems of m equations in m unknowns—for example, we may use matrix factorization techniques. More details can be found in Chvátal.

At some stage in the simplex method we have a feasible basis B, so we know that $\mathbf{b} \geq \mathbf{0}$. Perhaps we also have the associated BFS \mathbf{x}, but if we do not, we can find $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$ by setting $\mathbf{x}_N = \mathbf{0}$ and solving $Bx_B = \mathbf{b}$. To get $\mathbf{y}^T = c_B^T B^{-1}$, we solve $y^T B = c_B^T$. Then we can calculate $\mathbf{c}_N^T = \mathbf{c}_N^T - \mathbf{y}^T N$. If $\mathbf{c} \leq \mathbf{0}$, then \mathbf{x} is optimal. If not, then $\mathbf{c}_s > 0$ for some s. To find $d = A_s = B^{-1}A_s = B^{-1}a$, we solve $Bd = a$. If $d \leq \mathbf{0}$, then (P) is unbounded. Otherwise we use the ratio test to find the minimum ratio t and the leaving variable x_r. Replace \mathbf{x} by $\mathbf{x}_s = t$, $\mathbf{x}_N-s = \mathbf{0}$, and $\mathbf{x}_B = \mathbf{x}_B - td$. Replace B by $B + s - r$.

During these computations, remember that B is an ordered basis, and that this ordered basis labels the columns of A_B (also denoted B), the rows of B^{-1}, the rows of \mathbf{T}, the elements of d, and the elements of $\mathbf{b} = \mathbf{x}_B$. 90
Example 12.3 Solving GGMC using the revised simplex method. We are given the initial tableau:

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Our starting basis is $(3, 4, 5)$, So

$$B = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

1. Since our “current” tableau is the same as the initial tableau, we can directly see that $\bar{x} = (0, 0, 120, 70, 100)$ and that we can choose x_1 as the entering variable.

To find the leaving variable, write $\tilde{x}_B = \bar{x}_B - td$:

$$\begin{bmatrix} \tilde{x}_3 \\ \tilde{x}_4 \\ \tilde{x}_5 \end{bmatrix} = \begin{bmatrix} 120 \\ 70 \\ 100 \end{bmatrix} - t \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\tilde{x}_1 = t$$

Therefore $t = 50$, x_5 is the leaving variable, $(3, 4, 1)$ is the new basis, $\bar{x} = (50, 0, 70, 20, 0)$ is the new basic feasible solution, and

$$B = \begin{bmatrix} 3 & 4 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

is the new basis matrix B.

2. Find \bar{y} by solving $y^TB = c_B^T$:

$$\begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 3 & 4 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 4 & 1 \\ 0 & 0 & 5 \end{bmatrix}$$
Thus $\bar{y} = (0, 0, 2.5)^T$.
Calculate $\tau_N^T = c_N - \bar{y}^T N$.

$$
\begin{bmatrix}
\bar{v}_2 & \bar{v}_5
\end{bmatrix} =
\begin{bmatrix}
2 & 5 \\
4 & 0
\end{bmatrix} -
\begin{bmatrix}
0 & 0 & 2.5 \\
1 & 1 & 0
\end{bmatrix} =
\begin{bmatrix}
2 & 5 \\
1.5 & -2.5
\end{bmatrix}
$$

Since τ has some positive entries, we must pivot. We choose x_2 as the entering variable. Find d by solving $Bd = a$ where $a = A_2$:

$$
\begin{bmatrix}
3 & 4 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{bmatrix}
\begin{bmatrix}
d_3 \\
d_4 \\
d_1
\end{bmatrix} =
\begin{bmatrix}
2 \\
1 \\
1
\end{bmatrix}
$$

We see that

$$
\begin{bmatrix}
d_3 \\
d_4 \\
d_1
\end{bmatrix} =
\begin{bmatrix}
1.5 \\
0.5 \\
0.5
\end{bmatrix}
$$

To find the leaving variable, write $\bar{x}_B = \bar{x}_B - td$:

$$
\begin{bmatrix}
\bar{x}_3 \\
\bar{x}_4 \\
\bar{x}_1
\end{bmatrix} =
\begin{bmatrix}
70 \\
20 \\
50
\end{bmatrix} - t
\begin{bmatrix}
1.5 \\
0.5 \\
0.5
\end{bmatrix}
$$

Therefore $t = 40$, x_4 is the leaving variable, $(3, 2, 1)$ is the new basis, $\bar{x} = (30, 40, 10, 0, 0)$ is the new basic feasible solution, and

$$
B =
\begin{bmatrix}
3 & 2 & 1 \\
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 1 & 2
\end{bmatrix}
$$

is the new basis matrix B. 92
3. Find \bar{y} by solving $y^T B = c_B^T$:

$$
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix}
\begin{bmatrix}
3 & 2 & 1 \\
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 1 & 2
\end{bmatrix}
=
\begin{bmatrix}
3 & 2 & 1 \\
0 & 4 & 5
\end{bmatrix}
$$

Thus $\bar{y} = (0, 3, 1)^T$.

Calculate $\tau_N = c_N - \bar{y}^T N$.

$$
\begin{bmatrix}
\tau_4 \\
\tau_5
\end{bmatrix}
=
\begin{bmatrix}
4 & 5 \\
0 & 0
\end{bmatrix}
-
\begin{bmatrix}
0 & 3 & 1 \\
1 & 0 \\
0 & 1
\end{bmatrix}
=
\begin{bmatrix}
4 & 5 \\
-3 & -1
\end{bmatrix}
$$

Since τ is nonpositive, our current solution π is optimal.

\[\square\]

12.3 Dual Simplex Method

What if we have a dual feasible basis B with associated \bar{T}, \bar{x}, and \bar{y}? That is to say, assume $\bar{c} \leq O$. There is a method of pivoting through a sequence of dual feasible bases until either an optimal basis is reached, or else it is demonstrated that (P) is infeasible. A pivot that maintains dual feasibility is called a dual pivot, and the process of solving an LP by dual pivots is called the dual simplex method.

During this discussion, remember again that B is an ordered basis, and that this ordered basis labels the columns of A_B (also denoted B), the rows of B^{-1}, the rows of \bar{T}, and the elements of $\bar{b} = \bar{x}_B$.

If $\bar{b} \geq O$, then B is also primal feasible and π is an optimal solution to (P). So suppose
\(\bar{b}_r < 0 \) for some \(r \in B \). Assume that the associated row \(\bar{w} \) of \(\bar{A} \) is nonnegative:

\[
\begin{bmatrix}
0 & \ast \\
\vdots & \vdots \\
0 & \ast \\
\oplus \ldots \oplus 0 & - \\
\vdots & \vdots \\
0 & \ast \\
\oplus \ldots \oplus 0 & 1 & \ast
\end{bmatrix}
\]

Then the corresponding equation reads \(\bar{w}^T x = \bar{b}_r \), which is clearly infeasible for nonnegative \(x \) since \(\bar{w} \geq 0 \) and \(\bar{b}_r < 0 \). So \((P) \) is infeasible.

Now suppose \(\bar{w} \) contains at least one negative entry. We want to pivot on one of these negative entries \(\bar{w}_s \), for then the lower right-hand entry of the tableau will not decrease, and so the corresponding objective function value of the dual feasible solution will not increase.

\[
\begin{bmatrix}
\begin{array}{cc}
\vdots & \vdots \\
0 & \ast \\
\vdots & \vdots \\
0 & \ast \\
0 & - \\
\vdots & \vdots \\
0 & \ast \\
\oplus \ldots \oplus 0 & 1 & \ast
\end{array}
\end{bmatrix}
\]

We do not want the pivot to destroy dual feasibility, so we require

\[
\overline{c}_j - \frac{\overline{c}_s}{\overline{w}_s} \overline{w}_j \leq 0
\]

for all \(j \). There is no problem in satisfying this if \(\overline{w}_j \geq 0 \). For \(\overline{w}_j < 0 \) we require that

\[
\frac{\overline{c}_j}{\overline{w}_j} \geq \frac{\overline{c}_s}{\overline{w}_s}.
\]

So choose \(s \) such that

\[
\frac{\overline{c}_s}{\overline{w}_s} = \min_{j: \overline{w}_j < 0} \left\{ \frac{\overline{c}_j}{\overline{w}_j} \right\}.
\]

This is the \textit{dual ratio test} to determine the entering variable. Pivoting on \(\overline{w}_s \) causes \(r \) to leave the basis and \(s \) to enter the basis.

94
Example 12.4 Tableau 4 of Example 10.3 is dual feasible, but not primal feasible. We must pivot in the first row (which corresponds to basic variable x_4). Calculating ratios for the two negative entries in this row, $-1/(-1/3) = 3$, $-2/(-1/3) = 6$, we determine that the pivot column is that for x_3. Pivoting entry results in tableau 3, which is dual feasible. (It also happens to be primal feasible, so this is an optimal tableau.) □

Analogously to the primal simplex method, there are methods to initialize the dual simplex method and to avoid cycling.

12.4 Revised Dual Simplex Method

As in the revised simplex method, let us assume we have some method of solving nonsingular systems of m equations in m unknowns, and we wish to carry out a pivot of the dual simplex method without actually computing all of T.

Suppose B is a dual feasible basis, so we know that $\bar{c} \leq O$. We can find $\bar{x} = (\bar{x}_B, \bar{x}_N)$ by setting $\bar{x}_N = O$ and solving $B\bar{x}_B = b$. If $\bar{x}_B = \bar{b} \geq O$, then B is also primal feasible and \bar{x} is an optimal solution to (P). If not, then $\bar{b}_r < 0$ for some $r \in B$. To get $\bar{y}^T = c^T_B B^{-1}$, we solve $\bar{y}^T B = c^T_B$. Then we can calculate $\bar{v}^T = c^T - \bar{y}^T A$. We need the row \bar{w} of \bar{A} indexed by the basic variable r. Let v^T be the row of B^{-1} indexed by the basic variable r. We can find v^T by solving $v^T B = c^T_k$, where r is the kth ordered element of B. Then $\bar{w} = v^T A$. (Actually, we only need the nonbasic portion of \bar{w}, so we compute only $\bar{w}_N = v^T N$.) If $\bar{w} \geq O$, then (P) is infeasible. Otherwise, use the dual ratio test to determine the entering variable s and replace B by $B - r + s$.

Example 12.5 Suppose we are given the initial tableau for the GGMC problem:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Assume that the current basis is $(4, 2, 1)$.

1. The basis matrix is

$$B = \begin{bmatrix} 4 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
Find \bar{x} by solving $B x_B = b$:

\[
\begin{bmatrix}
4 & 2 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
x_4 \\
x_2 \\
x_1
\end{bmatrix}
=
\begin{bmatrix}
120 \\
70 \\
100
\end{bmatrix}
\]

and setting $\bar{x}_3 = \bar{x}_5 = 0$. Thus $\bar{x} = (80/3, 140/3, 0, -10/3, 0)$, and we can see that the basis is not primal feasible.

Find \bar{y} by solving $y^T B = c^T_B$:

\[
\begin{bmatrix}
y_1 & y_2 & y_3
\end{bmatrix}
\begin{bmatrix}
4 & 2 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{bmatrix}
=
\begin{bmatrix}
4 & 2 & 1 \\
0 & 4 & 5
\end{bmatrix}
\]

Thus $\bar{y} = (1, 0, 2)^T$.

Calculate $\bar{c}_N^T = c_N - \bar{y}^T N$.

\[
\begin{bmatrix}
\bar{c}_3 & \bar{c}_5
\end{bmatrix}
=
\begin{bmatrix}
3 & 5 \\
0 & 0
\end{bmatrix}
-
\begin{bmatrix}
1 & 0 & 2 \\
0 & 0 \\
0 & 1
\end{bmatrix}
=
\begin{bmatrix}
3 & 5 \\
-1 & -2
\end{bmatrix}
\]

Since \bar{c} is nonpositive, the current basis is dual feasible.

Now $\bar{x}_4 < 0$, so we need the row v^T of B^{-1} indexed by x_4. Since the ordered basis is $(4, 2, 1)$, we want the first row of B^{-1}, which we find by solving $v^T B = c_1$:

\[
\begin{bmatrix}
v_1 & v_2 & v_3
\end{bmatrix}
\begin{bmatrix}
4 & 2 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{bmatrix}
=
\begin{bmatrix}
4 & 2 & 1 \\
1 & 0 & 0
\end{bmatrix}
\]

The result is $v^T = [-1/3, 1, -1/3]$.

96
Calculate the nonbasic portion of the first row \overline{w} of A (the row of A indexed by x_4) by $\overline{w}_N = v^T N$:

$$\begin{bmatrix} \overline{w}_3 & \overline{w}_5 \end{bmatrix} = \begin{bmatrix} -1/3 & 1 & -1/3 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1/3 & -1/3 \end{bmatrix}$$

Both of these numbers are negative, so both are potential pivot entries. Check the ratios of $\overline{c}_j/\overline{w}_j$ for $j = 3, 5$: $-1/(-1/3) = 3, -2/(-1/3) = 6$. The minimum ratio occurs when $j = 3$. So the variable x_3 enters the basis (while x_4 leaves), and the new basis is $(3, 2, 1)$.

2. The basis matrix is now

$$B = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

Find π by solving $Bx_B = b$:

$$\begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_3 \\ x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} 120 \\ 70 \\ 100 \end{bmatrix}$$

and setting $x_4 = x_5 = 0$. Thus $\pi = (30, 40, 10, 0, 0)$, and we can see that the basis is primal feasible, hence optimal.

\[\square \]

12.5 Sensitivity Analysis

Suppose we have gone to the trouble of solving the linear program (P) and have found an optimal basis B with associated T, π, and \overline{y}, and then discover that we must solve a new problem in which either b or c has been changed. It turns out that we do not have to start over from scratch.
For example, suppose b is replaced by b'. This affects only the last column of T, so the basis B is still dual feasible and we can solve the new problem with the dual simplex method starting from the current basis. Or suppose c is replaced by c'. This affects only the last row of T, so the basis is still primal feasible and we can solve the new problem with the primal simplex method starting from the current basis.

12.5.1 Right Hand Sides

Suppose we replace b by $b+u$. In order for the current basis to remain optimal, we require that $B^{-1}(b+u) \geq O$; i.e., $B^{-1}b + B^{-1}u \geq O$, or $\bar{b} + B^{-1}u \geq O$. Find $v = B^{-1}u$ by solving $Bv = u$.

If the basis is still optimal, then \bar{y} does not change, but the associated BFS becomes $\bar{x}_N = O$, $\bar{x}_B = \bar{x}_B + v$. Its objective function value is $c_B^T B^{-1}(b+u) = \bar{y}^T (b+u) = \bar{y}^T b + \bar{y}^T u = \bar{z} + \bar{y}^T u$. So as long as the basis remains optimal, the dual variables \bar{y} give the rate of change of the optimal objective function value as a function of the changes in the right-hand sides. In economic contexts, such as the GGMC problem, the values \bar{y}_i are sometimes known as shadow prices.

Exercise 12.6 Prove if $\bar{b} > O$ then there exists $\varepsilon > 0$ such that the basis will remain optimal if $\|u\| < \varepsilon$. \square

Sometimes we are interested in parameterized changes in the right-hand sides. We can, for example, replace u by θu where θ is a scalar variable, and determine the optimal value as a function of θ. As we vary θ, if the basis becomes primal infeasible, then we can employ the dual simplex method to obtain a new optimal basis.

In particular, if we want to change only one component of b, use $b + \theta e_k$ for some k. Then v equals the kth column of B^{-1} (which sits in T), and we require $\bar{b} + \theta v \geq O$.

Example 12.7 Let’s vary the second right-hand side in the GGMC problem:

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>70 + θ</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
The final tableau used to be:

\[
\begin{array}{c|ccccc|c}
\hline
x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
\hline
0 & 0 & 1 & -3 & 1 & 0 & 10 \\
0 & 1 & 0 & 2 & -1 & 0 & 40 \\
1 & 0 & 0 & -1 & 1 & 0 & 30 \\
\hline
0 & 0 & 0 & -3 & -1 & 1 & -310 \\
\hline
\end{array}
\]

But with the presence of \(\theta \) it becomes:

\[
\begin{array}{c|ccccc|c}
\hline
x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
\hline
0 & 0 & 1 & -3 & 1 & 0 & 10 - 3\theta \\
0 & 1 & 0 & 2 & -1 & 0 & 40 + 2\theta \\
1 & 0 & 0 & -1 & 1 & 0 & 30 - \theta \\
\hline
0 & 0 & 0 & -3 & -1 & 1 & -310 - 3\theta \\
\hline
\end{array}
\]

Note that the coefficients of \(\theta \) match the entries in column \(x_4 \), the slack variable for the second constraint. The basis and tableau remain feasible and optimal if and only if \(10 - 3\theta \geq 0 \), \(40 + 2\theta \geq 0 \), and \(30 - \theta \geq 0 \); i.e., if and only if \(-20 \leq \theta \leq 10/3\). In this range,

\[
\begin{align*}
x^* &= (30 - \theta, 40 + 2\theta, 10 - 3\theta, 0, 0) \\
y^* &= (0, 3, 1) \\
z^* &= 310 + 3\theta
\end{align*}
\]

Should \(\theta \) drop below \(-20\), perform a dual simplex pivot in the second row:

\[
\begin{array}{c|ccccc|c}
\hline
x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
\hline
0 & 1 & 1 & -1 & 0 & 0 & 50 - \theta \\
0 & -1 & 0 & -2 & 1 & 0 & -40 - 2\theta \\
1 & 1 & 0 & 1 & 0 & 0 & 70 + \theta \\
\hline
0 & -1 & 0 & -5 & 0 & 1 & -350 - 5\theta \\
\hline
\end{array}
\]

This basis and tableau remain feasible and optimal if and only if \(50 - \theta \geq 0 \), \(-40 - 2\theta \geq 0 \), and \(70 + \theta \geq 0 \); i.e., if and only if \(-70 \leq \theta \leq -20\). In this range,

\[
\begin{align*}
x^* &= (70 + \theta, 0, 50 - \theta, 0, -40 - 2\theta) \\
y^* &= (0, 5, 0) \\
z^* &= 350 + 5\theta
\end{align*}
\]

Should \(\theta \) drop below \(-70\), we would want to perform a dual simplex pivot in the third row, but the absence of a negative pivot entry indicates that the problem becomes infeasible.
Should θ rise above $10/3$ in the penultimate tableau, perform a dual simplex pivot in the first row:

$$
\begin{array}{ccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
 0 & 0 & -1/3 & 1 & -1/3 & 0 -10/3 + \theta \\
 0 & 1 & 2/3 & 0 & -1/3 & 0 140/3 \\
 1 & 0 & -1/3 & 0 & 2/3 & 0 80/3 \\
 0 & 0 & -1 & 0 & -2 & 1 -320 \\
\end{array}
$$

This basis and tableau remain feasible and optimal if and only if $-10/3 + \theta \geq 0$; i.e., if and only if $\theta \geq 10/3$. In this range,

$$
x^* = (80/3, 140/3, 0, -10/3 + \theta, 0) \\
y^* = (1, 0, 2) \\
z^* = 320
$$

Exercise 12.8 Carry out the above process for the other two right-hand sides of the GGMC problem. Use the graph of the feasible region to check your results on the ranges of θ and the values of x^*, y^*, and z^* in these ranges. For each of the three right-hand sides, graph z^* as a function of θ. □

12.5.2 Objective Function Coefficients

Suppose we replace c by $c + u$. In order for the current basis to remain optimal, we calculate

$$
\tilde{\mathbf{y}}^T = (c_B + u_B)^TB^{-1} = c_B^TB^{-1} + u_B^TB^{-1} = \mathbf{y}^T + u_B^TB^{-1}.
$$

We can find $v^T = u_B^TB^{-1}$ by solving

$$
v^TB = u_B^T.\text{ Then we require that } \tilde{c} \leq O, \text{ where }
\tilde{c}^T = (c + u)^T - \tilde{\mathbf{y}}^TA = c^T + u^T - (\mathbf{y}^T + v^T)A = c^T - \mathbf{y}^TA + u^T - v^TA = \tilde{c}^T + u^T - v^TA.
$$

If the basis is still optimal, then \mathbf{x} does not change, but the associated dual basic feasible solution becomes $\mathbf{y} + v$. Its objective function value is

$$
\tilde{\mathbf{y}}^Tb = (\mathbf{y} + v)^Tb = \mathbf{y}^Tb + u_B^TB^{-1}b = \tilde{z} + u^T\overline{x}_B.\text{ So as long as the basis remains feasible, the primal variables } \overline{x}_B \text{ give the rate of change of the optimal objective function value as a function of the changes in the objective function coefficients.}
$$

Exercise 12.9 Prove that if $\overline{c} < 0$ then there exists $\varepsilon > 0$ such that the basis will remain optimal if $\|u\| < \varepsilon$. □
Sometimes we are interested in parameterized changes in the objective function coefficients. We can, for example, replace u by θu where θ is a scalar variable, and determine the optimal value as a function of θ. As we vary θ, if the basis becomes dual infeasible, then we can employ the primal simplex method to obtain a new optimal basis.

In particular, if we want to change only one component of c, use $c + \theta e_k$ for some k. If $k \in N$, then $v = O$ and we simply require that $c_k + \theta \leq 0$. If $k \in B$, then v equals the ℓth row of B^{-1} (which sits in T), where k is the ℓth ordered element of the basis. In this case we require $c^T + \theta(e^T_k - v^T A) \leq O$. Note that $v^T A$ is the ℓth row of A and sits within T.

Example 12.10 Let’s vary the first objective function coefficient in the GGMC problem:

\[
\begin{array}{cccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
 1 & 2 & 1 & 0 & 0 & 0 & 120 \\
 1 & 1 & 0 & 1 & 0 & 0 & 70 \\
 2 & 1 & 0 & 0 & 1 & 0 & 100 \\
 5 + \theta & 4 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]

The final tableau used to be:

\[
\begin{array}{cccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
 0 & 0 & 1 & -3 & 1 & 0 & 10 \\
 0 & 1 & 0 & 2 & -1 & 0 & 40 \\
 1 & 0 & 0 & -1 & 1 & 0 & 30 \\
 0 & 0 & 0 & -3 & -1 & 1 & -310 \\
\end{array}
\]

But with the presence of θ it becomes:

\[
\begin{array}{cccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
 0 & 0 & 1 & -3 & 1 & 0 & 10 \\
 0 & 1 & 0 & 2 & -1 & 0 & 40 \\
 1 & 0 & 0 & -1 & 1 & 0 & 30 \\
 0 & 0 & 0 & -3 + \theta & -1 - \theta & 1 & -310 - 30\theta \\
\end{array}
\]

Note that the nonbasic coefficients of θ match the negatives of the entries in the third row, because x_1 is the third element in the ordered basis of the tableau. The basis and tableau remain dual feasible and optimal if and only if $-3 + \theta \leq 0$ and $-1 - \theta \leq 0$; i.e., if and only if $-1 \leq \theta \leq 3$. In this range,

\[
\begin{align*}
x^* &= (30, 40, 10, 0, 0) \\
y^* &= (0, 3 - \theta, 1 + \theta) \\
z^* &= 310 + 30\theta
\end{align*}
\]
Should θ rise above 3, perform a simplex pivot in the fourth column:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3/2</td>
<td>1</td>
<td>0</td>
<td>-1/2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>-1/2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>3/2 - θ</td>
<td>0</td>
<td>0</td>
<td>-5/2 - θ</td>
<td>1</td>
</tr>
</tbody>
</table>

This basis and tableau remain dual feasible and optimal if and only if $3/2 - \theta/2 \leq 0$ and $-5/2 - \theta/2 \leq 0$; i.e., if and only if $\theta \geq 3$. In this range,

$$x^* = (50, 0, 70, 20, 0)$$
$$y^* = (0, 0, 5/2 + \theta/2)$$
$$z^* = 250 + 50\theta$$

On the other hand, should θ fall below -1 in the penultimate tableau, perform a simplex pivot in the fifth column:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1 + θ</td>
<td>-6 - 2θ</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

This basis and tableau remain dual feasible and optimal if and only if $1 + \theta \leq 0$ and $-6 - 2\theta \leq 0$; i.e., if and only if $-3 \leq \theta \leq -1$. In this range,

$$x^* = (20, 50, 0, 0, 10)$$
$$y^* = (-1 - \theta, 6 + 2\theta, 0)$$
$$z^* = 300 + 20\theta$$

Should θ fall below -3, perform a simplex pivot in the fourth column:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2</td>
<td>0</td>
<td>-1/2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>-1/2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 + θ</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

This basis and tableau remain dual feasible and optimal if and only if $3 + \theta \leq 0$; i.e., if and only if $\theta \leq -3$. In this range,

$$x^* = (0, 60, 0, 10, 40)$$
$$y^* = (2, 0, 0)$$
$$z^* = 240$$
Exercise 12.11 Carry out the above process for the other four objective function coefficients of the GGMC problem. Use the graph of the feasible region to check your results on the ranges of θ and the values of x^*, y^*, and z^* in these ranges. For each of the five objective function coefficients, graph z^* as a function of θ. □

12.5.3 New Variable

Suppose we wish to introduce a new variable x_p with associated new column A_p of A, and new objective function coefficient c_p. This will not affect the last column of T, so the current basis is still primal feasible. Compute $\tau_p = c_p - \bar{y}^T A_p$. If $\tau_p \leq 0$, then the current basis is still optimal. If $\tau_p > 0$, then we can use the primal simplex method to find a new optimal basis. If c_p has not yet been determined, then we can easily find the range of c_p in which the current basis remains optimal by demanding that $c_p \leq \bar{y}^T A_p$. This calculation is sometimes called "pricing out" a new variable or activity.

Example 12.12 Suppose the GGMC proposes producing a new product: bric-a-brac. One kilogram of bric-a-brac requires 1 hour of labor, 2 units of wood, and 1 unit of metal. How much profit c_6 must be realized before it becomes advantageous to produce this product?

At optimality we saw previously that $\bar{y} = (0, 3, 1)$. Pricing out the bric-a-brac:

$$
\bar{y}^T A_6 = [0, 3, 1] \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = 7.
$$

If the profit c_6 from bric-a-brac is no more than 7 dollars then it is not worthwhile to produce it, but if it is more than 7 dollars then a new optimal solution must be found.

Let’s suppose $c_6 = 8$. Then $\bar{c}_6 = 8 - 7 = 1$. We do not have to start from scratch, but can amend the optimal tableau by appending a new column $d = B^{-1} A_6$, which can be found by solving $B d = A_6$:

$$
\begin{bmatrix}
3 & 2 & 1 \\
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
d_1 \\
d_2 \\
d_3
\end{bmatrix}
=
\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}
$$

The solution is $d = (-4, 3, -1)^T$. Appending this column, and the value of \bar{c}_6, to the final
tableau, gives:

\[
\begin{array}{cccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & -z \\
 0 & 0 & 1 & -3 & 1 & -4 & 0 \\
 0 & 1 & 0 & 2 & -1 & 3 & 0 \\
 1 & 0 & 0 & -1 & 1 & -1 & 0 \\
 0 & 0 & 0 & -3 & -1 & 1 & -310 \\
\end{array}
\]

One simplex pivot brings us to the new optimal tableau:

\[
\begin{array}{cccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & -z \\
 0 & 4/3 & 1 & -1/3 & -1/3 & 0 & 0 \frac{190}{3} \\
 0 & 1/3 & 0 & 2/3 & -1/3 & 1 & 0 \frac{40}{3} \\
 1 & 1/3 & 0 & -1/3 & 2/3 & 0 & 0 \frac{130}{3} \\
 0 & -1/3 & 0 & -11/3 & -2/3 & 0 & 1 \frac{-970}{3} \\
\end{array}
\]

The new optimal strategy is to produce \(43\frac{1}{3}\) kilograms of gadgets and \(13\frac{1}{3}\) kilograms of bric-a-brac for a profit of \(323\frac{1}{3}\) dollars. □

12.5.4 New Constraint

Suppose we wish to add a new constraint \(a_p^T x \leq b_p\) to \((\hat{P})\). Introduce a new slack variable \(x_{n+m+1}\) with cost zero and add the equation \(a_p^T x + x_{n+m+1}\) to \((P)\). Enlarge the current basis by putting \(x_{n+m+1}\) into it. This new basis will still be dual feasible for the new system (you should be certain you can verify this), but it won’t be primal feasible if the old BFS \(\pi\) does not satisfy the new constraint. In this case, use the dual simplex method to find a new optimal basis.

Example 12.13 After solving the GGMC problem, let’s add the constraint \(x_1 \leq 18\). Using a new slack variable \(x_6\), we enlarge the final tableau:

\[
\begin{array}{cccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & -z \\
 0 & 0 & 1 & -3 & 1 & 0 & 0 \frac{10}{1} \\
 0 & 1 & 0 & 2 & -1 & 0 & 0 \frac{40}{1} \\
 1 & 0 & 0 & -1 & 1 & 0 & 0 \frac{30}{1} \\
 1 & 0 & 0 & 0 & 0 & 1 & 0 \frac{18}{1} \\
 0 & 0 & 0 & -3 & -1 & 0 & 1 \frac{-310}{1} \\
\end{array}
\]

104
Make the tableau basic again with a preliminary pivot in the first column:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Pivot to optimality with two dual simplex pivots:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

So the new optimal solution is to produce 18 kilograms of gadgets and 51 kilograms of gewgaws, with a profit of 294 dollars.

12.6 LP’s With Equations

Suppose our original LP (\hat{P}) consists only of equations. We could convert the problem into standard form by converting each equation into two inequalities, but it turns out that the problem can be solved without increasing the number of constraints.

Here is one way; see Chvátal for improvements and a more detailed explanation. First use Gaussian elimination to identify and remove redundant equations. Then multiply some constraints by -1, if necessary, so that all right-hand sides are nonnegative. Then, for each $i = 1, \ldots, m$ introduce a different new artificial variable x_{n+i} with a coefficient of $+1$ into the ith constraint. The Phase I problem minimizes the sum (maximizes the negative of the sum) of the artificial variables. The set of artificial variables is an initial primal feasible basis.
Upon completion of the Phase I problem, either we will have achieved a nonzero objective function value, demonstrating that the original problem is infeasible, or else we will have achieved a zero objective function value with all artificial variables necessarily equalling zero. Suppose in this latter case there is an artificial variable remaining in the basis. In the final tableau, examine the row associated with this variable. It must have at least one nonzero entry in some column corresponding to one of the original variables, otherwise we would discover that the set of equations of the original problem is linearly dependent. Pivot on any such nonzero entry, whether positive or negative, to remove the artificial variable from the basis and replace it with one of the original variables. This “artificial” pivot will not change primal feasibility since the pivot row has a zero in the last column. Repeating this process with each artificial variable in the basis, we obtain a primal feasible basis for the original problem. Now throw away the artificial variables and proceed with the primal simplex method to solve the problem with the original objective function.

If our original problem has a mixture of equations and inequalities, then we can add slack variables to the inequalities to turn them into equations. In this case we may be able to get away with fewer artificial variables by using some of the slack variables in the initial feasible basis.

Example 12.14 To solve the linear program:

\[
\begin{align*}
\text{max} & \quad 5x_1 + 4x_2 \\
\text{s.t.} & \quad x_1 + 2x_2 = 120 \\
& \quad x_1 + x_2 \leq 70 \\
& \quad 2x_1 + x_2 \leq 100 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

we insert an artificial variable \(x_3 \) into the first equation and slack variables into the next two inequalities. To test feasibility we try to minimize \(x_3 \) (or maximize \(-x_3\)).

\[
\begin{align*}
\text{max} & \quad -x_3 \\
\text{s.t.} & \quad x_1 + 2x_2 + x_3 = 120 \\
& \quad x_1 + x_2 + x_4 = 70 \\
& \quad 2x_1 + x_2 + x_5 = 100 \\
& \quad x_1, x_2, x_3, x_4, x_5 \geq 0
\end{align*}
\]

This is represented by the tableau:

\[
\begin{array}{ccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
\hline
1 & 2 & 1 & 0 & 0 & 0 & 120 \\
1 & 1 & 0 & 1 & 0 & 0 & 70 \\
2 & 1 & 0 & 0 & 1 & 0 & 100 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 \\
\end{array}
\]
Perform a preliminary pivot in the third column to make the tableau basic:

\[
\begin{array}{ccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
\hline
 1 & 2 & 1 & 0 & 0 & 0 & 120 \\
 1 & 1 & 0 & 1 & 0 & 0 & 70 \\
 2 & 1 & 0 & 0 & 1 & 0 & 100 \\
 1 & 2 & 0 & 0 & 0 & 1 & 120 \\
\end{array}
\]

One pivot results in optimality:

\[
\begin{array}{ccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & -z \\
\hline
 1/2 & 1 & 1/2 & 0 & 0 & 0 & 60 \\
 1/2 & 0 & -1/2 & 1 & 0 & 0 & 10 \\
 3/2 & 0 & -1/2 & 0 & 1 & 0 & 40 \\
 0 & 0 & -1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

Since the optimal objective function value is zero, the linear program is found to be feasible. The artificial variable \(x_3 \) is nonbasic, so its column can be deleted. Replace the Phase I objective function with the Phase II objective function:

\[
\begin{array}{cccc|c}
 x_1 & x_2 & x_4 & x_5 & -z \\
\hline
 1/2 & 1 & 0 & 0 & 0 & 60 \\
 1/2 & 0 & 1 & 0 & 0 & 10 \\
 3/2 & 0 & 0 & 1 & 0 & 40 \\
 5 & 4 & 0 & 0 & 1 & 0 \\
\end{array}
\]

Perform a preliminary pivot in the second column to make the tableau basic again:

\[
\begin{array}{cccc|c}
 x_1 & x_2 & x_4 & x_5 & -z \\
\hline
 1/2 & 1 & 0 & 0 & 0 & 60 \\
 1/2 & 0 & 1 & 0 & 0 & 10 \\
 3/2 & 0 & 0 & 1 & 0 & 40 \\
 3 & 0 & 0 & 0 & 1 & -240 \\
\end{array}
\]

Now one more pivot achieves optimality:

\[
\begin{array}{cccc|c}
 x_1 & x_2 & x_4 & x_5 & -z \\
\hline
 0 & 1 & -1 & 0 & 0 & 50 \\
 1 & 0 & 2 & 0 & 0 & 20 \\
 0 & 0 & -3 & 1 & 0 & 10 \\
 0 & 0 & -6 & 0 & 1 & -300 \\
\end{array}
\]
12.7 LP’s With Unrestricted Variables

Suppose our original problem has some unrestricted variable x_p. We can replace x_p with the difference $x^+_p - x^-_p$ of two nonnegative variables, as described in an earlier section. Using the revised simplex method and some simple bookkeeping, we do not increase the size of the problem by this conversion by any significant amount.

12.8 LP’s With Bounded Variables

Suppose our original problem has some variables with upper and/or lower bounds, $\ell_j \leq x_j \leq u_j$, where $\ell_j = -\infty$ if there is no finite lower bound, and $u_j = +\infty$ if there is no finite upper bound. A variable with either a finite upper or lower bound is called bounded; otherwise the variable is unrestricted or free. We can modify the simplex method easily to handle this case also.

The main change is this: At any stage in the simplex method we will have a basis B, a basic tableau T, and a selection of values for the nonbasic variables x_N. Instead of getting a BFS by setting $x_N = O$, we will instead set each bounded nonbasic variable to one of its finite bounds, and each unrestricted nonbasic variable to zero. Given such a selection, we can then solve for the values of the basic variables by solving $B\bar{x}_B = b - N\bar{x}_N$. If the value of each basic variable falls within its bounds, then we have a normal basic feasible solution. The important thing to realize is that we will have more than one normal BFS associated with a fixed tableau T, depending upon the choices of the values of the nonbasic variables.

Suppose that $\bar{c}_j \leq 0$ for every $j \in N$ for which $\bar{x}_j < u_j$, and that $\bar{c}_j \geq 0$ for every $j \in N$ for which $\bar{x}_j > \ell_j$. Then the value of \bar{z} cannot be increased by increasing any nonbasic variable currently at its lower bound, or decreasing any nonbasic variable currently at its upper bound. So the corresponding normal BFS is optimal. (Be certain you are convinced of this and can write this out more formally.)

Suppose that $\bar{c}_s > 0$ for some $s \in N$ for which $\bar{x}_s < u_s$. Then we can try adding $t \geq 0$ to \bar{x}_s, keeping the values of the other nonbasic variables constant, and monitoring the changes in the basic variables:

\[
\begin{align*}
\bar{x}_s &= \bar{x}_s + t \\
\bar{x}_j &= \bar{x}_j, \quad j \in N - s \\
\bar{x}_B &= B^{-1}(b - N\bar{x}_N) \\
&= B^{-1}b - B^{-1}N\bar{x}_N - B^{-1}A_s t \\
&= \bar{x}_B - dt
\end{align*}
\]

where $d = B^{-1}A_s$. Choose t as large as possible so that x_s does not exceed its upper bound and no basic variable drifts outside its upper or lower bound. If t can be made arbitrarily large, then the LP is unbounded, and we stop. If x_s hits its upper bound first, then we do
not change the basis B; we just have a new normal BFS with x_s at its upper bound. If one of the basic variables x_r hits its upper or lower bound first, then s enters the basis, r leaves the basis, and x_r is nonbasic at its upper or lower bound.

Suppose on the other hand that $\bar{s}_s < 0$ for some $s \in N$ for which $\bar{x}_s > \ell_s$. Then we can try adding $t \leq 0$ to \bar{x}_s, keeping the values of the other nonbasic variables constant, and monitoring the changes in the basic variables using the same equations as above. Choose t as negative as possible so that x_s does not exceed its lower bound and no basic variable drifts outside its upper or lower bound. If t can be made arbitrarily negative, then the LP is unbounded, and we stop. If x_s hits its lower bound first, then we do not change the basis B; we just have a new normal BFS with x_s at its lower bound. If one of the basic variables x_r hits its upper or lower bound first, then s enters the basis, r leaves the basis, and x_r is nonbasic at its upper or lower bound.

Example 12.15 Assume that we require $5 \leq x_1 \leq 45$, $0 \leq x_2 \leq 45$, and that the three slack variables have lower bounds of 0 and upper bounds of $+\infty$.

1. We could try to initialize the simplex method with the basis $(3, 4, 5)$, which corresponds to the tableau:

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Let us choose to set both nonbasic variables to their lower bounds. Using the equations from the above tableau to solve for the values of the basic variables, we find:

<table>
<thead>
<tr>
<th>Nonbasic Variables</th>
<th>Basic Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 = \ell_1 = 5$</td>
<td>$x_3 = 115$</td>
</tr>
<tr>
<td>$x_2 = \ell_2 = 0$</td>
<td>$x_4 = 65$</td>
</tr>
<tr>
<td></td>
<td>$x_5 = 90$</td>
</tr>
</tbody>
</table>

Fortunately, the values of the three basic variables fall within their required bounds, so we have an initial normal basic feasible solution.

Since \bar{x}_1 and \bar{x}_2 are both positive, we wish to increase the value of x_1 or x_2. As they are each presently at their lower bounds, we may increase either one. We will choose
to increase \(x_1 \) but keep \(x_2 \) fixed. Then changes in the basic variables depend upon the entries of the column \(x_1 \) of the tableau:

<table>
<thead>
<tr>
<th>Nonbasic Variables</th>
<th>Basic Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1 = \ell_1 = 5 + t)</td>
<td>(x_3 = 115 - t)</td>
</tr>
<tr>
<td>(x_2 = \ell_2 = 0)</td>
<td>(x_4 = 65 - t)</td>
</tr>
<tr>
<td>(x_5 = 90 - 2t)</td>
<td></td>
</tr>
</tbody>
</table>

Choose \(t \geq 0 \) as large as possible, keeping all variable values within the required bounds. Thus \(5 + t \leq 45 \), \(115 - t \geq 0 \), \(65 - t \geq 0 \), and \(90 - 2t \geq 0 \). This forces \(t = 40 \), and this value of \(t \) is determined by the nonbasic variable \(x_1 \). Therefore we do not change the basis, but merely set \(x_1 \) to its upper bound of 45. Then we have:

<table>
<thead>
<tr>
<th>Nonbasic Variables</th>
<th>Basic Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1 = u_1 = 45)</td>
<td>(x_3 = 75)</td>
</tr>
<tr>
<td>(x_2 = \ell_2 = 0)</td>
<td>(x_4 = 25)</td>
</tr>
<tr>
<td>(x_5 = 10)</td>
<td></td>
</tr>
</tbody>
</table>

2. Now we still have \(\tau_1 \) and \(\tau_2 \) both positive, which means we wish to increase \(x_1 \) and \(x_2 \). But \(x_1 \) is at its upper bound; hence cannot be increased. Hence we fix \(x_1 \), increase \(x_2 \), and use the second column of the tableau to determine the changes of the basic variable values:

<table>
<thead>
<tr>
<th>Nonbasic Variables</th>
<th>Basic Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1 = 45)</td>
<td>(x_3 = 75 - 2t)</td>
</tr>
<tr>
<td>(x_2 = 0 + t)</td>
<td>(x_4 = 25 - t)</td>
</tr>
<tr>
<td>(x_5 = 10 - t)</td>
<td></td>
</tr>
</tbody>
</table>

Choose \(t \geq 0 \) as large as possible, keeping all variable values within the required bounds. Thus \(0 + t \leq 45 \), \(75 - 2t \geq 0 \), \(25 - t \geq 0 \), and \(10 - t \geq 0 \). This forces \(t = 10 \), and this value of \(t \) is determined by the basic variable \(x_5 \). This variable becomes nonbasic at its lower bound value, and \(x_2 \) enters the basis. The new basis is (3, 4, 2), and the variable values are:

<table>
<thead>
<tr>
<th>Nonbasic Variables</th>
<th>Basic Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1 = u_1 = 45)</td>
<td>(x_3 = 55)</td>
</tr>
<tr>
<td>(x_5 = \ell_5 = 0)</td>
<td>(x_4 = 15)</td>
</tr>
<tr>
<td>(x_2 = 10)</td>
<td></td>
</tr>
</tbody>
</table>
3. The current tableau is now:

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>-80</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-30</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>1</td>
<td>-400</td>
</tr>
</tbody>
</table>

τ_1 and τ_5 are both negative, indicating that we wish to decrease either x_1 or x_5. x_5 is already at its lower bound, and cannot be decreased, but we can decrease x_1. Hence we fix x_5, decrease x_1, and use the first column of the tableau to determine the changes of the basic variable values:

<table>
<thead>
<tr>
<th>Nonbasic Variables</th>
<th>Basic Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 = 45 + t$</td>
<td>$x_3 = 55 + 3t$</td>
</tr>
<tr>
<td>$x_5 = 0$</td>
<td>$x_4 = 15 + t$</td>
</tr>
<tr>
<td></td>
<td>$x_2 = 10 - 2t$</td>
</tr>
</tbody>
</table>

Choose $t \leq 0$ as negative as possible, keeping all variable values within the required bounds. Thus $45 + t \geq 0$, $55 + 3t \geq 0$, $15 + t \geq 0$, and $10 - 2t \leq +\infty$. This forces $t = -15$, and this value of t is determined by the basic variable x_4. This variable becomes nonbasic at its lower bound value, and x_1 enters the basis. The new basis is $(3, 1, 2)$, and the variable values are:

<table>
<thead>
<tr>
<th>Nonbasic Variables</th>
<th>Basic Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_4 = \ell_4 = 0$</td>
<td>$x_3 = 10$</td>
</tr>
<tr>
<td>$x_5 = \ell_5 = 0$</td>
<td>$x_1 = 30$</td>
</tr>
<tr>
<td></td>
<td>$x_2 = 40$</td>
</tr>
</tbody>
</table>

4. The current tableau is now:

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$-z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>-310</td>
</tr>
</tbody>
</table>

τ_4 and τ_5 are both negative, indicating that we wish to decrease either x_4 or x_5. Each of these variables is currently at its lower bound, however, so our current solution is optimal. We get the (by now familiar) objective function value by using the original (or the current) equation involving z: $z = 5x_1 + 4x_2 = 310$.

111
What changes do we need to make to the Phase I procedure to find an initial normal basic feasible solution? One method is to assume that we have equations $Ax = b$ and introduce artificial variables x_{n+1}, \ldots, x_{n+m} as before, one for each constraint. Declare each original variable to be nonbasic with Phase I objective function coefficient zero, and set each original variable x_j to a value π_j, which is either its lower bound or its upper bound (or zero if it is an unrestricted variable). Determine the value π_{n+i} of each artificial variable x_{n+i} by

$$\pi_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} \pi_j.$$

If $\pi_{n+i} \geq 0$, give this variable a lower bound of zero, an upper bound of $+\infty$, and a Phase I objective function coefficient of -1. If $\pi_{n+i} < 0$, give this variable a lower bound of $-\infty$, an upper bound of zero, and a Phase I objective function coefficient of $+1$. Then we will have an initial normal basic feasible solution, and we attempt to find a normal basic feasible solution for the original problem by maximizing the Phase I objective function.

12.9 Minimization Problems

We can solve an LP which is a minimization problem by multiplying the objective function by -1 and solving the resulting maximization problem. Alternatively, we can keep the original objective function and make the obvious changes in the criterion for entering variables. For example, if all variables are restricted to be nonnegative, then x_s is a candidate to enter the basis if $\pi_s < 0$ (as opposed to $\bar{c}_s > 0$ in a maximization problem).

Exercise 12.16 For each of the computational exercises in this section in which full tableaux are used, repeat the calculations using the revised simplex or the revised dual simplex methods. □
13 Exercises: More On the Simplex Method

Exercise 13.1 Discuss why it makes economic sense for the shadow prices to be zero for constraints of \((\hat{P})\) that are not satisfied with equality by an optimal basic feasible solution \(\bar{x}\). \(\square\)

Exercise 13.2 Devise a perturbation method to avoid cycling in the dual simplex method, and prove that it works. \(\square\)

Exercise 13.3 Devise a “Phase I” procedure for the dual simplex method, in case the initial basis consisting of the set of slack variables is not dual feasible. \(\square\)

Exercise 13.4 If \(x_1, \ldots, x_k \in \mathbb{R}^n\), and \(t_1, \ldots, t_k\) are nonnegative real numbers that sum to 1, then \(t_1 x_1 + \cdots + t_k x_k\) is called a convex combination of \(x_1, \ldots, x_k\). A convex set is a set that is closed under convex combinations. Prove that the set \(\{x \in \mathbb{R}^n : Ax \leq b, \ x \geq O\}\) is a convex set. \(\square\)

Exercise 13.5 Consider the linear programs \((P)\) and \((P(u)):\)

\[
\begin{align*}
\max & \ c^T x \\
\text{s.t.} & \ Ax = b \\
& \ x \geq O
\end{align*}
\]

\[
\begin{align*}
\max & \ c^T x \\
\text{s.t.} & \ Ax = b + u \\
& \ x \geq O
\end{align*}
\]

\((P)\) \hspace{1cm} \((P(u))\)

Assume that \((P)\) has an optimal objective function value \(z^*\). Suppose that there exists a vector \(y^*\) and a positive real number \(\varepsilon\) such that the optimal objective function value \(z^*(u)\) of \((P(u))\) equals \(z^* + u^T y^*\) whenever \(\|u\| < \varepsilon\). Prove or disprove: \(y^*\) is an optimal solution to the dual of \((P)\). If the statement is false, what additional reasonable assumptions can be made to make it true? Justify your answer. \(\square\)

Exercise 13.6 Suppose \(B\) is an optimal basis for \((P)\). Suppose that \(u_1, \ldots, u_k\) are vectors such that \(B\) remains an optimal basis if \(b\) is replaced by any one of \(b + u_1, \ldots, b + u_k\). Let \(t_1, \ldots, t_k\) be nonnegative real numbers that sum to 1. Prove that \(B\) is also an optimal basis for \(b + t_1 u_1 + \cdots + t_k u_k\). (This is sometimes called the 100% rule). \(\square\)

Exercise 13.7 Give a precise explanation of the following statement: If \((P)\) and \((D)\) are a dual pair of linear programs, performing a dual simplex pivot in a tableau of \((P)\) is “the same” as performing a primal pivot in a tableau of \((D)\). \(\square\)
Exercise 13.8 Here is another way to turn a system of equations into an equivalent system of inequalities: Show that \((x_1, \ldots, x_n)\) satisfies

\[
\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, \ldots, m
\]

if and only if \((x_1, \ldots, x_n)\) satisfies

\[
\sum_{j=1}^{n} a_{ij} x_j \leq b_i, \quad i = 1, \ldots, m \\
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_j \geq \sum_{i=1}^{m} b_i
\]

\(\Box\)

Exercise 13.9 Read Chapter 11 of Chvátal for a good example of using linear programming to model, solve, and report on a “real-life” problem. \(\Box\)

Exercise 13.10 Chvátal, 1.6–1.9, 5.4–5.7, 5.9–5.10, 7.1–7.4, 8.1–8.9, 9.4, 9.6–9.7, 10.1–10.5. You should especially choose some problems to test your understanding of sensitivity analysis. \(\Box\)
Index

e, 56
alternatives, theorems of the, 25, 26, 34, 35, 37–39, 59, 89
artificial variable, 81, 112
basic direction, 17
basic feasible direction, 21, 76, 88
basic feasible solution, 20, 66
basic feasible solution, estimate of size, 87
basic point, 65
basic solution, 17
basic tableau, 64
basic variable, 63
basis, 62, 63
basis, dual feasible, 68
basis, feasible, 20, 66
basis, optimal, 69
basis, primal feasible, 20, 66
binding constraint, 9
bizarre, opposite, standard, 52
Bland’s pivot rule, 78
bounded variable, 108
bounded variables, linear programs with, 108
characterization, good, 26, 35, 48
chessboard, 61
column space, 13
column, pivot, 69
combination, convex, 88, 113
combination, nonnegative, 88
complementary slackness, 48, 54, 85
complementary slackness, strong, 59, 89
component, 15
connected digraph, 15
connected vertices, 15
constraint, binding, 9
constraint, linear, 6
convex combination, 88, 113
convex set, 113
costs, reduced, 21
Cramer’s rule, 3
cycle, 15
cycling, 77
cycling, avoiding by perturbation, 79
Dantzig, George, 42
degenerate pivot, 76
degenerate point, 76
diet problem, 56
digraph, 15
digraph, connected, 15
directed graph, 15
direction, basic, 17
direction, basic feasible, 21, 76, 88
direction, feasible, 56
dual basic feasible solution, 68
dual feasible basis, 68
dual feasible tableau, 68
dual linear program, 42, 68
dual linear program, algebraic motivation, 43
dual linear program, economic motivation, 40
dual linear program, geometric motivation, 54
dual pivot, 93
dual ratio test, 94
dual simplex method, 93
duality, 40, 56
duality theorems, 43, 50
duality, strong, 45, 47
duality, weak, 43
duals of general linear programs, 49
duals of linear programs in standard form, 41

duality, strong, 45, 47
edge, 15
endpoint, 15
entering variable, 72
entry, pivot, 69
equation, linear, 6
equations, linear programs with, 105
equations, systems of, 25
equivalent linear program, 50
equivalent tableau, 64
estimate of size of basic feasible solution, 87
Eulerian graph, 61
exposed point, 88
extreme point, 88
extreme vector, 88

Farkas Lemma, 38
feasible basis, 66
feasible direction, 56
feasible linear program, 6
feasible region, 6
feasible region, unbounded, 6
feasible solution, 6
feasible tableau, 66
flow-conservation equations, 16
forest, 15
forest, spanning, 15
Fourier-Motzkin elimination, 27, 33, 37
fractional linear program, 58
free variable, 50, 108
function, linear, 6

Gaussian elimination, 2, 3, 14, 25
good characterization, 26, 35, 48
gradient, 9
graph, directed, 15
graph, Eulerian, 61
graph, undirected, 15
halfspace, 6
head, 15
hyperplane, 6

inequality, linear, 6
infeasible linear program, 6
initial primal feasible tableau, 80
integer linear program, 11
irredundant system, 37
Lagrange multipliers, 57
largest coefficient pivot rule, 73
largest increase pivot rule, 73
leaving variable, 72
left nullspace, 13
linear constraint, 6
linear equation, 6
linear function, 6
linear inequalities, systems of, 25, 37
linear inequality, 6
linear program, 6, 9
linear program in standard form, 7
linear program, dual, 42, 68
linear program, equivalent, 50
linear program, feasible, 6
linear program, fractional, 58
linear program, infeasible, 6
linear program, integer, 11
linear program, minimization, 112
linear program, primal, 42
linear program, unbounded, 6, 44

116
linear programs with bounded variables, 108
linear programs with equations, 105
linear programs with unrestricted variables, 108
loop, 15
matrix algebra, 2
matrix, multiplication, 13
matrix, vertex-edge incidence, 16
minimization linear program, 112
nonbasic variable, 63
nonnegative combination, 88
norm, 3
normal basic feasible solution, 108
nullspace, 13
nullspace, left, 13
objective function, 6
objective function coefficients sensitivity analysis, 100
objective function coefficients, variable, 87
one hundred percent rule, 113
opposite, standard, bizarre, 52
optimal basis, 69
optimal dual basic feasible solution, 69
optimal primal basic feasible solution, 69, 89
optimal solution, 6
optimal tableau, 69
optimal value, 6
path, 15
perturbation to avoid cycling, 79
phase I, 89
phase I problem, 81, 112
phase II problem, 82
pivot, 21, 69
pivot column, 69
pivot entry, 69
pivot row, 69
pivot rule, Bland’s, 78
pivot rule, largest increase, 73
pivot rule, smallest subscript, 73, 78
pivot, degenerate, 76
pivot, dual, 93
pivot, largest coefficient, 73
point, basic, 65
point, degenerate, 76
point, exposed, 88
point, extreme, 88
point, support of, 88
pricing out, 103
primal basic feasible solution, 66, 88, 89
primal feasible basis, 66
primal feasible tableau, 66
primal linear program, 42
quadratic program, 60
rank of a matrix, 14
ratio test, 71
ratio test, dual, 94
reduced costs, 21
revised dual simplex method, 95
revised simplex method, 90
right hand sides sensitivity analysis, 98
right hand sides, variable, 87
row space, 13
row, pivot, 69
saddlepoint, 57
sensitivity analysis, 97
sensitivity analysis, new constraint, 104
sensitivity analysis, new variable, 103
sensitivity analysis, objective function coefficients, 100
sensitivity analysis, right hand sides, 98
shadow price, 98, 113
simplex method, 21, 62, 74, 86, 90, 113
simplex method detects primal unboundedness, 74
simplex method, dual, 93
simplex method, revised, 90
simplex method, revised dual, 95
simplex method, termination, 76
slack variable, 19, 62
smallest subscript pivot rule, 73, 78
solution, basic, 17
solution, basic feasible, 20, 66
solution, basic optimal, 69
solution, dual basic feasible, 68
solution, dual basic optimal, 69
solution, feasible, 6
solution, geometric, 5
solution, normal basic feasible, 108
solution, optimal, 6
solution, optimal dual basic feasible, 69
solution, optimal primal basic feasible, 69, 89
solution, primal basic feasible, 66, 88, 89
solution, unique optimal, 90
spanning forest, 15
spanning tree, 15
standard form, linear program in, 7
standard, opposite, bizarre, 52
strong complementary slackness, 59, 89
strong duality, 45, 47, 85
subgraph, 15
support of a point, 88
support of a vector, 88
systems of equations, 25
systems of linear inequalities, 25, 37

118
vector, support of a, 88
vertex, 15
vertex-edge incidence matrix, 16
vertices, connected, 15
weak duality, 43, 69