1. Let us assume we have an LP of the form

\[
\begin{align*}
\text{max } z &= c^T x \\
\text{s.t. } Ax &= b \\
x &\geq O
\end{align*}
\]

(a) Let \(\bar{x} \) be a feasible point. Prove that \(\bar{x} \) is a basic feasible solution if and only if it is a vertex (using our earlier definition of vertex involving \(N(\bar{x}) \)).

(b) Assume that we have a basic feasible solution \(\bar{x} \) associated with some basis \(B \), and that we also have some basic direction \(\bar{w} \) associated with \(B \) and nonbasic \(s \in N \). For convenience, let us also assume that \(\bar{x}_j > 0 \) for each \(j \in B \) and that \(\bar{w} \) is not nonnegative. So when we consider the ray \(\bar{x} + t\bar{w}, t \geq 0 \), we will discover some leaving variable \(x_r, r \in B \). Prove that \(B' = (B \cup \{s\}) \setminus \{r\} \) is a basis; i.e., prove that the columns of \(A_{B'} \) are linearly independent.

2. Exercise 8.3.

4. Exercise 10.2.