1. (5 points.) The purpose of this exercise is to prove the power law for derivatives of x^n using the Principle of Induction and the product rule for derivatives. The Principle of Induction states the following. Suppose P_n is a set of statements depending on $n = 1, 2, 3, \ldots$. We would like to verify that they are true. However, it is impossible to verify infinitely many statements one at a time! Instead, suppose we can verify 1) the statement P_1 is true, and, 2) suppose that if we assume P_n is true, then we can use this information to verify that P_{n+1} is also true. In this case, the Principle of Induction states that all the statements P_n are true!

(a) Let $f_n(x) = x^n$, for $n = 1, 2, 3, \ldots$. We want to use the Principle of Induction and the product rule to show that

$$f'_n(x) = nx^{n-1}, \quad n = 1, 2, 3, \ldots.$$

Formulate a statement P_n that will imply the power law stated above.

(b) Verify the truth of the first statement P_1.

(c) Assume that statement P_n is true. Use the truth of P_n and the product rule to show that P_{n+1} is true.

(d) Conclude that P_n holds for any $n = 1, 2, 3, \ldots$ by the Principle of Induction.

2. (5 points.) Find the coordinates of a point Q on the graph of the function $f(x) = x^2$ so that the secant line through the points $(-1, 1)$ and Q has the same slope as the tangent to the graph of the function f at the point $(2, 4)$.