(1) The form of the partial fraction decomposition of the rational function

\[f(x) = \frac{3x + 2}{(x+1)^2(x^2 + 3)} \]

with the parameters \(A, B, C, D, E \) being constants to be determined, is:

A) \(\frac{A}{(x+1)^2} + \frac{Bx+C}{x^2 + 3} \)
B) \(\frac{A}{x+1} + \frac{Bx+C}{(x+1)^2} + \frac{D}{x^2 + 3} \)
C) \(\frac{A}{x+1} + \frac{Bx+C}{(x+1)^2} + \frac{Dx+E}{x^2 + 3} \)
D) \(\frac{A}{(x+1)^2} + \frac{B}{x^2 + 3} \)
E) none of the above

(2) Which of the following statements is false?

A) \(\int_1^\infty \frac{dx}{x^2} \) converges
B) \(\int_0^1 \frac{dx}{x^{4/3}} \) diverges
C) \(\int_1^2 \frac{dx}{(x-1)^2} \) diverges
D) \(\int_2^4 \frac{dx}{x-2} \) converges
E) \(\int_2^\infty \frac{dx}{\sqrt{x^2 - 1}} \) diverges

\[\int_2^\infty \frac{dx}{x^2 - 1} \]

\[= \lim_{w \to 0^+} \frac{1}{\ln(w)} = -\infty \]
(3) Which of the integrals below represents the length of the curve $y = \tan x$ from $x = 0$ to $x = \pi/4$?

A) $\int_{0}^{\pi/4} \sqrt{1 + \tan^2 x} \, dx$

B) $\int_{0}^{\pi/4} \sqrt{1 + \tan^2 x \sec^2 x} \, dx$

C) $\int_{0}^{\pi/4} \sqrt{1 + \sec^4 x} \, dx$

D) $2\pi \int_{0}^{\pi/4} \tan x \sqrt{1 + \tan^2 x} \, dx$

E) $\int_{0}^{\pi/4} x \tan x \, dx$

$$y' = \sec^2 (x)$$
$$\left(y' \right)^2 = \left(\sec^2 (x) \right)^2$$
$$L = \int_{0}^{\pi/4} \sqrt{1 + \left(\sec^2 x \right)^2} \, dx$$

(4) A triangular laminar (thin plate) of uniform mass density has its vertices at the points $A = (0, 3)$, $B = (0,0)$, and $C = (1,0)$ in the x-y plane. Where is the center of mass of the laminar located?

A) $(0,1)$

B) $\left(\frac{1}{3}, 1 \right)$

C) $\left(\frac{1}{3}, \frac{3}{2} \right)$

D) $\left(\frac{2}{3}, 1 \right)$

E) $\left(\frac{1}{3}, \frac{3}{2} \right)$

$$\begin{align*}
M_x &= \rho \int_{0}^{3} y \left(\frac{x}{3} + 1 \right) \, dy \\
&= \rho \int_{0}^{3} \left(-\frac{y^2}{3} + \frac{y}{2} \right) \, dy = \rho \left(\frac{1}{3} + \frac{3}{2} \right) = \rho \left(\frac{3}{2} \right) \\
M_y &= \rho \int_{0}^{1} x \left(-3x + 3 \right) \, dx = \rho \int_{0}^{1} \left(-9x^2 + 3x \right) \, dx = \rho \left(-3 + \frac{3}{2} \right) = \rho \left(\frac{3}{2} \right)
\end{align*}$$

$$\text{cm} = \left(\frac{1}{3}, 1 \right)$$
(5) Which of the following differential equations is NOT separable?

A) \(xy' + y = y^2 \)
B) \((1 + x^2) y' = x^3 y \)
C) \(x(y^2 - 1) + y(x^2 - 1)y' = 0 \)
D) \(y' = \sin y \)

(6) Which of the following statements is false? In what follows, \(k \) and \(b \) are given constants, and \(C \) stands for an arbitrary constant.

A) The general solution of the differential equation \(y' = k(y - b) \) is \(y = b + Ce^{kt} \).
B) The general solution of the differential equation \(y' = k(y - b) \) is \(y = b - Ce^{kt} \).
C) The general solution of the differential equation \(y' = -k(y - b) \) is \(y = b + Ce^{-kt} \).
D) If \(k > 0 \), then all solutions of \(y' = k(y - b) \) tend to \(\infty \) as \(t \to \infty \).
E) If \(k > 0 \), then all solutions of \(y' = -k(y - b) \) approach the same limit as \(t \to \infty \).
(7) Evaluate the integral
\[\int \frac{3x}{(x-1)(x^2+2)} \, dx. \]

\[\frac{2x}{(x-1)(x^2+2)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+2} \]

\[3x = A(x^2+2) + (Bx+C)(x-1) \]

\[x=1 \quad 3 = A(3) \Rightarrow A = 1 \]

\[x=0 \quad 0 = A(2) + C(-1) \Rightarrow C = 2 \]

\[x=-1 \quad -3 = A(3) + (-B+2)(-2) \Rightarrow B = -1 \]

\[\int \left(\frac{1}{x-1} + \frac{-x+2}{x^2+2} \right) \, dx = \int \frac{1}{x-1} \, dx - \int \frac{x}{x^2+2} \, dx + 2 \int \frac{dx}{x^2+2} \]

\[u = x^2 + 2 \]
\[\frac{du}{2} = x \, dx \]

\[= \ln |x-1| - \frac{1}{2} \ln (x^2+2) + 2 \int \frac{dx}{x^2+2} \]

\[\int \frac{dx}{x^2+2} = \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x}{\sqrt{2}} \right) \]

\[\int \frac{dx}{x^2+2} = \frac{1}{2} \ln (x^2+2) + \sqrt{2} \tan^{-1} \left(\frac{x}{\sqrt{2}} \right) + C \]
Free Response Questions: Show your work!

(8) Compute the surface area of the surface obtained by rotating the graph of \(y = \sqrt{1 + 2x} \) about the \(x \)-axis over the interval \([0, 1]\).

\[
y' = \frac{1}{2} (1 + 2x)^{-\frac{1}{2}} (2) = (1 + 2x)^{-\frac{1}{2}}
\]

\[
(y')^2 = (1 + 2x)^{-1}
\]

\[
S = 2\pi \int_0^1 y \sqrt{1 + (y')^2} \, dx = 2\pi \int_0^1 \frac{\sqrt{1 + 2x}}{1 + 2x} \, dx
\]

\[
= 2\pi \int_0^1 \frac{\sqrt{2 + 2x}}{1 + 2x} \, dx
\]

\[
= 2\pi \int_0^1 \frac{\sqrt{2 + 2x}}{2} \, dx = 2\pi \int_0^1 (2 + 2x)^{\frac{1}{2}} \, dx
\]

\[
n = 2 + 2x
\]

\[
dx = 2 \, dx
\]

\[
= 2\pi \left(\frac{2}{3} \right) \left(2 + 2x \right)^{\frac{3}{2}} \bigg|_0^1
\]

\[
= 2\pi \left(4^{\frac{3}{2}} - 2^{\frac{3}{2}} \right) = \frac{2\pi}{3} \left(5, 17157 \right)
\]

\[
\approx 10.8313
\]
Free Response Questions: Show your work!

(9) The following table gives the measured values of a force function \(f(x) \), where \(x \) is in meters and \(f(x) \) in newtons.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>10.0</td>
<td>9.5</td>
<td>9.3</td>
<td>9.1</td>
<td>9.2</td>
</tr>
</tbody>
</table>

\[\Delta x = 2 \] meters

(a) Use Simpson’s Rule to estimate the work done by the force \(f \) in moving an object from \(x = 0 \) to \(x = 8 \) meters.

\[
W \approx \frac{\Delta x}{3} \left(f(0) + 4f(2) + 2f(4) + 4f(6) + f(8) \right)
\]

\[
= \frac{2}{3} \left(10.0 + 4(9.5) + 2(9.3) + 4(9.1) + 9.2 \right)
\]

\[
= \frac{2}{3}(112.2) = 74.8 \text{ Newtons}
\]

(b) It is known that the force function \(f(x) \) satisfies the inequality \(|f^{(4)}(x)| \leq 2\) on the interval \([0,8]\). Let \(S_N \) be the \(N \)th approximation to \(\int_0^8 f(x)dx \) by Simpson’s rule. Use the given inequality on \(|f^{(4)}(x)|\) to find the smallest \(N \) that guarantees \(\text{Error}(S_N) \leq 10^{-1} \). (Hint: Use the error bound for \(S_N \) given on the last page of the exam.)

\[
\text{Error}_N \leq \frac{K_4 (b-a)^5}{180 N^4} \leq \frac{1 f^{(4)}(c) |(8-0)^5}{180 (N^4)}
\]

\[
\text{Error}_N \leq \frac{2 (8)^5}{180N^4} \leq 10^{-1}
\]

\[
\frac{2 (8^5)}{180 (10^{-1})} \leq N^4
\]

\[
N \geq \sqrt[4]{\frac{2 (8^5)}{180 (10)}} \approx 7.767
\]

\[\Rightarrow \text{smallest } N = 8 \]
(10) Let $T_n(x)$ ($n = 0, 1, 2, \cdots$) be the nth Taylor polynomial for $f(x) = e^x$ centered at $a = 0$.

(a) Find the Taylor polynomial $T_n(x)$.

\[
\begin{align*}
 f(0) &= e^0 = 1 \\
 f'(0) &= e^0 = 1 \\
 f''(0) &= e^0 = 1 \\
 &\vdots \\
 f^{(n)}(0) &= e^0 = 1 \\
\end{align*}
\]

(b) Find a value of n for which

\[
|e^x - T_n(x)| \leq 10^{-2}
\]
on the interval $[0, 1]$. (Hint: Use the error bound given on the last page of the exam.)

\[
10^{-2} \leq \frac{f^{(k+1)}(\xi) |x-0|^n}{(n+1)!}
\]

\[f^{(k+1)}(1) = e^1 = e\]

\[
10^{-2} \leq \frac{e^n}{(n+1)!}
\]

\[
(n+1)! \leq e^{(100)} = 271.83
\]

\[\text{when } n = 6 \quad \text{answer}
\]

\[
(n+1)! = 7! = 5040
\]

\[\text{when } n = 5 \quad (n+1)! = 6! = 720 \quad \text{not big enough}
\]
Free Response Questions: Show your work!

(11) Solve the initial value problem

\[\frac{dx}{dt} = x^2(1-t^2), \quad x(1) = 1. \]

\[\frac{dy}{x^2} = (1-t^2) \, dt \]

\[\int \frac{dy}{x^2} = \int (1-t^2) \, dt \]

\[\frac{-1}{x} = t - \frac{t^3}{3} + C \]

\[x = 1, \quad t = 1 \]

\[\frac{-1}{1} = 1 - \frac{1}{3} + C \]

\[-\frac{5}{3} = C \]

\[\frac{-1}{x} = t - \frac{t^3}{3} - \frac{5}{3} \]

\[x = \frac{-1}{t - \frac{t^3}{3} - \frac{5}{3}} \]