- Each question is followed by space to write your answer. Write your solutions neatly in the space below the question.
- Clearly indicate your answer and the reasoning used to arrive at that answer. Unsup-ported answers may not receive credit.
- Unless a problem specifically asks for an approximation, you must give exact answers to receive credit.
- You may use a calculator, but not one which has symbolic manipulation capabilities.
- Turn off your cell phones, and any other electronic devices which can send and receive wireless signals. You may not wear ear-plugs during the exam.
- No books or notes may be used.

Name: ______________________________

Section: __________

Last four digits of student identification number: _________

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14=7+7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14=7+7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10=4+6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6=6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6=6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12=4+8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12=6+6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12=6+6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14=7+7</td>
<td></td>
</tr>
</tbody>
</table>

$\sin^2 A + \cos^2 A = 1$
$1 + \cot^2 A = \csc^2 A$
$\tan^2 A + 1 = \sec^2 A$

$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$\sin(2A) = 2 \sin A \cos A$
$\cos(2A) = \cos^2 A - \sin^2 A$
1. (a) Evaluate the series \(\sum_{n=2}^{\infty} \frac{4}{n^2 - 1} \)

(b) Determine whether or not the series \(\sum_{k=0}^{\infty} \frac{\cos k}{e^k} \) converges. Make sure to state the test(s) that you use, and verify that their assumptions are satisfied.
2. Let \(R \) be the (unbounded) region which lies below the curve \(y = x^{-1.5} \), above the \(x \)-axis, and to the right of the line \(x = 1 \). Hint: For the problems below, think of \(R \) as being bounded on the right by the line \(x = a \) for some large \(a \), and then let \(a \to \infty \).

(a) Consider the solid obtained by revolving \(R \) about the \(x \)-axis. Determine whether or not this solid has finite volume. If it does, compute it. Make sure to clearly indicate the relevant integral.

(b) Consider the solid obtained by revolving \(R \) about the \(y \)-axis. Determine whether or not this solid has finite volume. If it does, compute it. Make sure to clearly indicate the relevant integral.
3. An oddly-shaped well is 50 feet deep, and water (which weighs 62 pounds per cubic foot) fills the bottom 40 feet. Let $A = A(x)$ be the cross-sectional area (in square feet) of the well with respect to the height x (in feet) from the bottom of the well.

(a) The work required to empty the well is given by an integral of the form

$$\int_a^b c(r - x) A(x) \, dx .$$

Give the values of the constants a, b, c and r.

(b) Use Simpson’s rule and the measurements below to estimate the work needed to pump all of the water from the well.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30</td>
<td>25</td>
<td>30</td>
<td>25</td>
<td>30</td>
<td>25</td>
</tr>
</tbody>
</table>
4. Give the Taylor polynomial of degree 2, centered at 0, for the function \(f(x) = (2 - x)^\pi \).

5. Set up an integral for evaluating the arclength of the cycloid \(x = t - \sin t, \ y = 1 - \cos t \) for \(0 \leq t \leq 2\pi \). Simplify the integrand using basic trigonometric identities. Do not evaluate this integral.
6. Consider the polar curves \(r = \sin(2\theta) \) and \(r = \cos \theta \), which are pictured below.

(a) Determine the Cartesian coordinates \((x, y)\) of the point of intersection which is strictly in the first quadrant, i.e. \(x, y > 0 \).

(b) Set up an integral, or integrals, for computing the area of the region in the first quadrant between the bolded portion of the two curves. \textit{Do not evaluate the integral(s)}.

\[
\]
7. The Bessel function J_0 is given by the power series $J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} \left(\frac{x}{2} \right)^{2n}$.

(a) Determine the interval of convergence for this series.

(b) Letting S_N denote the N^{th} partial sum, determine the smallest integer N for which it is guaranteed that $|J_0(1/2) - S_N(1/2)| < 10^{-16}$.
8. Consider the seasonal-growth model \(\frac{dP}{dt} = kP \cos(rt) \), \(P(0) = P_0 \), where \(k, r \) and \(P_0 \) are positive constants.

(a) Give a formula for \(P \) in terms of \(t, k, r \) and \(P_0 \).

(b) Taking the values \(r = 2, k = 1 \) and \(P_0 = 100 \), estimate \(P(\pi/2) \) using Euler’s method, with step-size \(h = \pi/4 \). You may give your answer as a decimal approximation (providing at least three digits beyond the decimal).
9. Evaluate each of the definite or indefinite integrals below:

(a) \(\int x \arctan x \, dx \)

(b) \(\int_{0}^{\pi/4} \tan^3 x \sec^3 x \, dx \)