1. Simplify the following:
 a. \((x^2)^7\)
 b. \(x^2(x^3 - 3x) - 4x^5 + 9x^3\)
 c. \(\frac{x^{15}}{x^3}\)
 d. \(\sqrt[3]{x^{15}}\)

2. Solve for \(y\):
 \[8x^3y + 2xy - 5 = 6x^2\]

3. Plot these points in the \(xy\) plane:
 A \((0, 0)\) B \((5, 0)\) C \((0, -4)\) D \((-3, 5)\)

4. Without using a calculator, sketch a graph of each of these in the \(xy\) plane:
 A \(y = x\) B \(y = 3\) C \(x = 3\) D \(y = x^2\) E \(y = \frac{1}{x}\)

5. A line \(L\) goes through the points \((-3, 7)\) and \((1, -5)\).
 a. Find the slope of \(L\).
 b. Find the equation of \(L\) using the point-slope form.
 c. Find the slope of a line perpendicular to \(L\).
1. Consider the function

\[f(x) = \begin{cases}
2x + 1 & x < 1 \\
-x^2 - 1 & x \geq 1
\end{cases} \]

a. Evaluate \(f(0) \), \(f(1) \) and \(f(2) \).

b. Sketch a graph of \(y = f(x) \).

2. Find the points of intersection between the graphs of \(2x^2 + 3y^2 = 66 \) and \(y = 4 \).

3. Let \(f(x) = \sqrt{4x - 3} \).

a. Evaluate \(f(7) \), \(f(1) \), \(f(10) \) and \(f(0) \).

b. Find the domain of \(f(x) \).

c. Find the range of \(f(x) \).

d. Find \(f(x + h) \).

e. Find the inverse of \(f(x) \).
1. A train leaves city A at 10:00 a.m. and arrives at city B at 12:15 p.m. The train leaves city B at 2:00 p.m. and arrives at city C three hours later. The average velocity of the train while traveling from A to B was 45 miles per hour. The distance between city B and city C is 240 miles. What is the average velocity of the train from city A to city C (including the stop)?

2. A train leaves city A at 8:00 a.m. and arrives at city B at 10:00 a.m. The average velocity of the train from A to B was 60 miles per hour. The train leaves city B at 10:00 a.m. and arrives at city C at 1:00 p.m. Find the average velocity of the train from city B to C, given that the average velocity from A to C was 50 miles per hour.

3. Let \(f(x) = \frac{3}{x^2 + 1} \).
 a. Find the average rate of change of \(f(x) \) from \(x = 0 \) to \(x = 2 \).
 b. Draw the graph of \(y = f(x) \) (a graphing calculator can help). Show how to represent your answer to part (a) on the graph.

4. Find a positive number \(A \) so that the average rate of change of \(g(x) = 3x^2 - 1 \) from \(x = 2 \) to \(x = A \) is equal to 33.
1. Let \(g(x) = x^2 - 4x \).
 a. Find the value of \(x \) for which the tangent line to \(y = g(x) \) has slope equal to 6.
 b. Find the value of \(g(x) \) at the point where the tangent line to \(y = g(x) \) is parallel to \(y = 2x + 5 \).
 c. Find a value of \(x \) so that the instantaneous rate of change of \(g \) at \(x \) is equal to the average rate of change of \(g \) from \(x = -1 \) to \(x = 3 \).

2. An object is launched up in the air. The height of the object after \(t \) seconds is \(P(t) \) feet, where \(P(t) = -16t^2 + 256t + 64 \).
 a. When is the object at its greatest height? (Hint: What must be true about the velocity of the object when it is at the greatest height?)
 b. What is the maximum height of the object?

3. Suppose \(q(x) = 3x^2 - 12x + 8 \) and \(p(x) = 3x^2 - 12x + 5 \).
 a. Find \(q'(x) \) and \(q'(1) \).
 b. Find the equation of the tangent line to \(y = q(x) \) at \(x = 1 \).
 c. Find \(p'(x) \) and \(p'(1) \).
 d. Find the equation of the tangent line to \(y = p(x) \) at \(x = 1 \).
 e. What do you notice when you compare your answers? Draw the graphs of \(y = p(x) \) and \(y = q(x) \) and explain what you’ve found.
1. Find each of the following limits.
 a. \(\lim_{t \to 3} (4t + 7) \)
 b. \(\lim_{x \to 1} \frac{x^2 - 5x + 6}{x^2 - 3x + 1} \)

2. Let \(f(x) = \begin{cases}
 x^2 + 2 & \text{if } x \leq 1 \\
 -3x + 1 & \text{if } x > 1
 \end{cases} \)

Sketch the graph of \(y = f(x) \) and use it to find the following:
 a. \(f(1) \)
 b. \(\lim_{x \to 1} f(x) \)
 c. \(\lim_{x \to 1^-} f(x) \)
 d. \(\lim_{x \to 1^+} f(x) \)
 e. \(f(2) \)
 f. \(\lim_{x \to 2} f(x) \)
 g. \(\lim_{x \to 2^-} f(x) \)
 h. \(\lim_{x \to 2^+} f(x) \)

3. Sketch a graph of \(y = |x| \) and use it to find \(\lim_{x \to 0^-} f(x) \), \(\lim_{x \to 0^+} f(x) \) and \(\lim_{x \to 0} f(x) \).

4. Sketch a graph of \(y = \frac{|x|}{x} \) and use it to find \(\lim_{x \to 0^-} f(x) \), \(\lim_{x \to 0^+} f(x) \) and \(\lim_{x \to 0} f(x) \).
1. Compute each of the following limits.
 a. \(\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 3x + 2} \)
 b. \(\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^2 - 4} \)
 c. \(\lim_{h \to 0} \frac{(5 + 2h)^2 - 25}{h} \)
 d. \(\lim_{t \to 0} \frac{\frac{2}{t} + \frac{7t - 4}{2t}}{} \)
 e. \(\lim_{h \to 0} \frac{(x + h)^2 - x^2}{h} \)
 f. \(\lim_{x \to 0} \frac{x^2 - 3x}{x^2 - 6x} \)
 g. \(\lim_{x \to 5} \frac{x^2 + 1}{x - 5} \)
 h. \(\lim_{x \to 0^+} \frac{27x}{\sqrt{x}} \)

2. Refer to Recitation Worksheet 3A problem 2.
 a. Is \(f(x) \) continuous at \(x = 1 \)?
 b. Is \(f(x) \) continuous at \(x = 2 \)?

3. Refer to Recitation Worksheet 3A problem 3. Is \(y = |x| \) continuous at \(x = 0 \)?

4. Let \(g(x) = \begin{cases}
 x - 1 & \text{if } x < 2 \\
 x^2 - A^2 & \text{if } x \geq 2
\end{cases} \)
 a. Sketch the graph of \(y = g(x) \) using \(A = 0 \). Is \(g(x) \) continuous?
 b. Sketch the graph of \(y = g(x) \) using \(A = 1 \). Is \(g(x) \) continuous?
 c. Sketch the graph of \(y = g(x) \) using \(A = 2 \). Is \(g(x) \) continuous?
 d. Do you think there is a real value of \(A \) which makes \(g(x) \) continuous?
 If so, what is \(A \)? If not, why not?
1. The graph of \(y = f(x) \) is shown below, and the tangent line at \(x = 7 \) is indicated.

 a. Find \(f'(-2), f'(0), \) and \(f'(7). \)

 b. For which values of \(x \) is \(f(x) \) not continuous?

 c. For which values of \(x \) is \(f(x) \) not differentiable?

2. Let \(g(x) = |x^2 + 2x - 15| \). Find all points where \(g(x) \) is not differentiable.
On these problems you will use the **limit definition of the derivative**,
\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}, \]
to compute each of the following derivatives.

For each function do the following steps:

(a) Find the difference quotient \(\frac{f(x+h) - f(x)}{h} \)

(b) Simplify your answer to part (a) using algebra

(c) Take the limit as \(h \to 0 \) to compute \(f'(x) \).

1. \(f(x) = x^2 + 5x \)
2. \(f(x) = \sqrt{x+5} \)
3. \(f(x) = \frac{1}{x+3} \)
4. \(f(x) = \sqrt{3x-2} \)
5. \(f(x) = \frac{7}{x-4} \)