MA137 – Calculus 1 with Life Science Applications

Discrete-Time Models
Sequences and Difference Equations
(Sections 2.1 and 2.2)

Alberto Corso
(alberto.corso@uky.edu)

Department of Mathematics
University of Kentucky

September 12, 2016

What are sequences?

So far we have studied real valued functions whose domain consists of the real numbers, say:

\[f : \mathbb{R} \rightarrow \mathbb{R}. \]

For example, consider the function

\[f(t) = 3 \cdot 2^t. \]

The graph of \(f \) looks like:

More generally, we have considered functions of the form

\[P(t) = P_0 (1 + r)^t, \]

where \(r \) is a positive real number (\(r \equiv \) growth rate).

Definition and Notation

Definition (Sequence/Notation)

We can write the function

\[f : \mathbb{N} \rightarrow \mathbb{R}, \quad n \mapsto f(n) \]

as a list of numbers

\[f_0, f_1, f_2, f_3, \ldots, \]

where \(f_n = f(n) \).

We refer to this list as a sequence.

We write \(\{f_n \mid n \in \mathbb{N}\} \) (or \(\{f_n\} \) for short) to denote the entire sequence.

We list the values of the sequence \(\{f_n\} \) in order of increasing \(n \)

\[f_0, f_1, f_2, f_3, \ldots. \]

Remark: Instead of ‘f’ we often use the letters ‘a’ or ‘b’ or ‘c’ ... to denote sequences.

For example:

\[a_n = \frac{n}{n+1}, \quad b_n = \frac{(-1)^n}{(n+1)^2}, \quad c_n = 3 \cdot 2^n \]
Example 1:

Find a general formula for the general term a_n for each of the following sequences starting with a_0:

(a) $0, 1, 4, 9, 16, 25, 36, 49, \ldots$

(b) $1, -1, 1, -1, 1, \ldots$

(c) $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots$

Repeat this problem starting this time with a_1.

(a) Consider $0, 1, 4, 9, 16, 25, 36, 49, \ldots$.

There are all squares of numbers.

We want them to be labeled as

\[a_0 = 0, \ a_1 = 1, \ a_2 = 4, \ a_3 = 9, \ a_4 = 16, \ldots \]

Thus \[a_n = n^2 \] is the nth term of the sequence.

(b) We want: $a_0 = 1, \ a_1 = -1, \ a_2 = 1, \ a_3 = -1, \ldots$

So we have \[a_n = (-1)^n \] for all $n \in \mathbb{N}$.

(c) We want: $a_0 = 1, \ a_1 = -\frac{1}{2}, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{1}{8}, \ldots$

\[a_4 = \frac{1}{16}, \ \text{etc...} \]

Notice that all denominators are powers of 2; there is an alternating sign.

\[a_n = \left(\frac{-1}{2}\right)^n \]

Example 2:

Consider the sequence given by

\[a_n = 2 + \frac{(-1)^n}{n} \quad n > 1. \]

List the first six terms of the sequence and plot them on the Cartesian plane.
Recursions (or Recursive Sequences)

The exponential growth model we considered earlier
\[P_n = 3 \cdot 2^n \]

is an example of a sequence. Explicitly, we have
\[P_0 = 3, \quad P_1 = 6, \quad P_2 = 12, \quad P_3 = 24, \quad P_4 = 48, \quad \ldots \]

It is not difficult to observe that this sequence of numbers describes quantities that double after each unit of time.

More explicitly, we can write
\[P_1 = 2P_0, \quad P_2 = 2P_1, \quad P_3 = 2P_2, \quad P_4 = 2P_3, \quad \ldots \]

We can summarize the above facts into a single expression. I.e.,
\[P_{n+1} = 2P_n \]

this expression gives a rule that is applied repeatedly to go from one time step (the nth) to the next one (the (n+1)st).

Such an expression is called a recursion.

Example 3:

(a) List the first five terms of the recursively define sequence
\[a_0 = 1 \quad a_{n+1} = (n+1)a_n. \]

Do you see something familiar?

(b) List the first five terms of the recursively define sequence
\[a_1 = 1 \quad \text{and} \quad a_{n+1} = 1 + \frac{1}{a_n}. \]

Do you see something familiar?

Caution: While it is easy to compute terms in a recursive relation, there are 2 issues:
- In order to find \(a_{100} \), we have to compute the previous 99 terms.
- We may not get a feeling for what will eventually happen.
Example 4: (Online Homework HW06, # 8)

(a) Find a recursive definition for the sequence \(9, 11, 13, 15, 17, \ldots\) Assume the first term in the sequence is indexed by \(n = 1\).

(b) Find a closed formula for the sequence \(9, 11, 13, 15, 17, \ldots\) Assume the first term in the sequence is indexed by \(n = 1\).

This sequence is given by the quotient of 2 consecutive Fibonacci's numbers.

When \(n \to \infty\) this ratio tends to \(1.618 = \frac{1 + \sqrt{5}}{2}\), \text{GOLDEN RATIO}.

Recap

We gave two descriptions of sequences: explicit and recursive.

- An **explicit description** is of the form \(a_n = f(n)\), \(n = 0, 1, 2, \ldots\) where \(f(n)\) is a function of \(n\).

- A **recursive description** is of the form \(a_{n+1} = g(a_n)\), \(n = 0, 1, 2, \ldots\) where \(g(a_n)\) is a function of \(a_n\).

Remark 1:
In the above situation the value of \(a_{n+1}\) depends only on the value one time step back, namely, \(a_n\). In this case the recursion is called a **first-order recursion**.

Remark 2:
The sequence defined by \(a_0 = 1, a_1 = 1, a_{n+2} = a_n + a_{n+1}\) for \(n = 0, 1, 2, \ldots\) is an example of a **second-order recursion**.
Recursive Sequences in the Life Sciences

Recursive sequences (or **difference equations**) are often used in biology to model, for example, cell division and insect populations. In this biological context we usually replace \(n \) by \(t \), to denote time. If we think of \(t \) as the current time, then \(t + 1 \) is one unit of time into the future. We also use \(N_t \) to denote the population size. Thus a first-order difference equation modeling population size has the form

\[
N_{t+1} = f(N_t) \quad t = 0, 1, 2, 3, \ldots
\]

In this context we call \(f \) an **updating function** because \(f \) ‘updates’ the population from \(N_t \) to \(N_{t+1} \).

Example 5: (Online Homework HW06, #11)

(a) A population of herbivores satisfies the growth equation

\[
y_{n+1} = 1.05y_n
\]

where \(n \) is in years. If the initial population is \(y_0 = 6,000 \), then determine the explicit expression of the population.

(b) A competing group of herbivores satisfies the growth equation

\[
z_{n+1} = 1.06z_n
\]

If the initial population is \(z_0 = 3,200 \), then determine how long it takes for this population to double.

(c) Find when the two populations are equal.

Malthusian (or Exponential) Growth Model

One of our earlier examples can be rewritten as

\[
N_{t+1} = 2N_t \quad N_0 = 3 \quad \text{or} \quad N_t = 3 \cdot 2^t.
\]

This example is a special case of the so-called **Malthusian Growth Model**, named after Thomas Malthus (1766-1834):

\[
N_{t+1} = (1 + r)N_t
\]

which says that the next generation is proportional to the population of the current generation.

It is typical to set \(R = 1 + r \) so that the recursion becomes

\[
N_{t+1} = RN_t.
\]

This recursion has the following explicit form

\[
N_t = N_0 R^t.
\]

Hence the name of Exponential Growth Model.

(a) \(y_n = 6,000 \cdot (1.05)^n \)

(b) \(z_n = 3,200 \cdot (1.06)^n \)

We want to know \(n \) such that

\[
3,200 \cdot (1.06)^n = 2 \cdot 3,200
\]

i.e. we want \((1.06)^n = 2\)

Take \(\log \) (or \(\ln \)) of both sides

\[
\log (1.06)^n = \log (2) \quad \Rightarrow \quad n = \frac{\log 2}{\log (1.06)} \approx 11.895
\]
Visualizing Recursions

We can visualize recursions by plotting N_t on the horizontal axis and N_{t+1} on the vertical axis. Since $N_t \geq 0$ for biological reasons, we restrict the graph to the first quadrant.

The exponential growth recursion

$$N_{t+1} = RN_t$$

is then a straight line through the origin with slope R.

[i.e., $N_{t+1} = f(N_t)$, where $f(x) = Rx$]

For any current population size N_t, the graph allows us to find the population size in the next time step, namely, N_{t+1}.

Unless we label the points according to the corresponding t-value, we would not be able to tell at what time a point (N_t, N_{t+1}) was realized. We say that time is implicit in this graph.

The hallmark of exponential growth is that the ratio of successive population sizes, N_t/N_{t+1}, is constant. More precisely, it follows from $N_{t+1} = RN_t$ that

$$\frac{N_t}{N_{t+1}} = \frac{1}{R}$$

If the population consists of annual plants, we can interpret the ratio N_t/N_{t+1} as the parent-offspring ratio.

If this ratio is constant, parents produce the same number of offspring, regardless of the current population density. Such growth is called density independent.

When $R > 1$, the parent-offspring ratio, is less than 1, implying that the number of offspring exceeds the number of parents. This model yields then an ever-increasing population size. It eventually becomes biologically unrealistic, since any population will sooner or later experience food or habitat limitations that will limit its growth.