Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y. Also suppose that we expect a linear relationship between these two quantities, that is, we expect $y = ax + b$, for some constants a and b. We wish to conduct an experiment to determine the value of the constants a and b. We collect some data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, which we plot in a rectangular coordinate system. Since we expect a linear relationships, all these points should lie on a single straight line:

The slope of this line will be a, and the intercept is b. In other words, we should have that the following system of linear equations has exactly one solution

$$\begin{align*}
ax_1 + b &= y_1 \\
ax_2 + b &= y_2 \\
\vdots \\
ax_n + b &= y_n
\end{align*}$$

that is, we should expect the system of linear equations above to be consistent.

Unfortunately, when we plot our data, we discover that our points do not lie on a single line. This is only to be expected, since our measurements are subject to experimental error. On the other hand, it appears that the points are approximately “collinear.” It is our aim to find a straight line with equation

$$y = \hat{a}x + \hat{b}$$

which fits the data “best.” Of course, optimality could be defined in many different ways.

It is customary to proceed as follows. Consider the deviations (differences)

$$\delta_1 = (ax_1 + b) - y_1, \quad \delta_2 = (ax_2 + b) - y_2, \quad \ldots, \quad \delta_n = (ax_n + b) - y_n.$$

If all the data points were to be lying on a straight line then there would be a unique choice for a and b such that all the deviations are zero. In general they aren’t. Which of the deviations are positive, negative or exactly zero depends on the choice of the parameters a and b. As a condition of optimality we minimize the square root of the sum of the squares of the deviations (‘least squares”), that is, we choose \hat{a} and \hat{b} in such a way that

$$\sqrt{\delta_1^2 + \delta_2^2 + \ldots + \delta_n^2}$$

is as small as possible.

Remark: This kind of analysis of data is also called regression analysis, since one of the early applications of least squares was to genetics, to study the well-known phenomenon that children of unusually tall or unusually short parents tend to be more normal in height than their parents. In more technical language, the children’s height tends to “regress toward the mean.”

If you have taken a Statistics class in high school, you might have seen the following formulas

$$a = \frac{n\left(\sum_{i=1}^{n} x_i y_i\right) - \left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)}{n\left(\sum_{i=1}^{n} x_i^2\right) - \left(\sum_{i=1}^{n} x_i\right)^2}$$

$$b = \frac{1}{n}\left(\sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} x_i\right),$$

which give the optimal solution to our least squares approximation problem. There is no need to memorize these formulas. The discussion that follows in this set of notes will explain how these formulas are obtained!
Remark/Example: Suppose we are looking for a linear relationship between more than two quantities! For example, a consulting firm has been hired by a large SEC university to help make admissions decisions. Each applicant provides the university with three pieces of information: their score on the SAT exam, their score on the ACT exam, and their high school GPA (0-4 scale). The university wishes to know what weight to put on each of these numbers in order to predict student success in college.

The consulting firm begins by collecting data from the previous year’s freshman class. In addition to the admissions data, the firm collects the student’s current (college) GPA (0-4 scale), say C_{GPA}. A partial listing of the firm data might look like

<table>
<thead>
<tr>
<th>SAT</th>
<th>ACT</th>
<th>GPA</th>
<th>C_{GPA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>30</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>500</td>
<td>28</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>750</td>
<td>35</td>
<td>3.9</td>
<td>3.5</td>
</tr>
<tr>
<td>650</td>
<td>25</td>
<td>2.8</td>
<td>3.2</td>
</tr>
<tr>
<td>800</td>
<td>35</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Ideally, the firm would like to find numbers (weights) x_1, x_2, x_3 such that for all students

$$(\text{SAT})x_1 + (\text{ACT})x_2 + (\text{GPA})x_3 = (C_{\text{GPA}}).$$

These numbers would tell the firm (hence, the university) exactly what weight to put on each piece of data. Statistically, of course, it is highly unlikely that such numbers exist. Still, we would like to have an approximate “best” solution.

Remark/Example: Instead of a linear relationship among the two quantities x and y involved in our original physical system, suppose that we expect a quadratic relationship. That is, we expect

$$y = ax^2 + bx + c,$$

for some constants a, b, and c. This means that all our plotted data points should lie on a single parabola. In other words, the system of equations below should have exactly one solution

$$\begin{align*}
ax_1^2 + bx_1 + c &= y_1 \\
ax_2^2 + bx_2 + c &= y_2 \\
&\vdots \\
ax_n^2 + bx_n + c &= y_n
\end{align*}$$

or, in other words, the system of linear equations should be consistent.

Again, this is unlikely since data measurements are subject to experimental error. As we mentioned, if the exact solution does not exist, we seek to find the equation of the parabola $y = \hat{a}x^2 + \hat{b}x + \hat{c}$ which fits our given data best.

General problem: In our all previous examples, our problem reduces to finding a solution to a system of n linear equations in m variables, with $n > m$. Using our traditional notations for systems of linear equations, we translate our problem into matrix notation. Thus, we are seeking to solve

$$Ax = b,$$

where A is an $n \times m$ given matrix (with $n > m$), x is a column vector with m variables, and b is a column vector with n given entries.
Example 1: Find a solution to
\[
\begin{bmatrix}
-1 & 2 \\
2 & -3 \\
-1 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
4 \\
1 \\
2
\end{bmatrix}.
\]

Solution. The augmented matrix for this system is
\[
\begin{bmatrix}
-1 & 2 & 4 \\
2 & -3 & 1 \\
-1 & 3 & 2
\end{bmatrix}.
\]
After applying row operations we obtain
\[
\begin{bmatrix}
-1 & 2 & 4 \\
0 & 1 & 9 \\
0 & 0 & -11
\end{bmatrix}.
\]
This system is inconsistent, so there isn’t a solution.

“Best” approximate solution to our general problem: Now, instead of looking for a solution to our given system of linear equations (which, in general, we don’t have!) we could look for an approximate solution. To this end, we recall that for a given vector \(v = [v_1, v_2, \ldots, v_n]^T\) its length is defined to be \(\|v\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}\). (This is a generalized version of Pythagoras’ Theorem!)

If \(A\) is an \(n \times m\) matrix, \(x\) is a column vector with \(m\) entries and \(b\) is a column vector with \(n\) entries, a least squares solution to the equation \(Ax = b\) is a vector \(\hat{x}\) so that the length of the vector \(A\hat{x} - b\), that is \(\|A\hat{x} - b\|\), is as small as possible. In other words
\[
\|A\hat{x} - b\| \leq \|Az - b\|
\]
for every other vector \(z\).

How do we find this? This is answered in the following Theorem.

Theorem:
The least squares solution \(\hat{x}\) to the system of linear equations \(Ax = b\), where \(A\) is an \(n \times m\) matrix with \(n > m\), is a/the solution \(\hat{x}\) to the associated system (of \(m\) linear equations in \(m\) variables)
\[
(A^T A) \hat{x} = A^T b,
\]
where \(A^T\) denotes the transpose matrix of \(A\).

(Note: the matrix \(A^T A\) in the Theorem is a symmetric, square matrix of size \(m \times m\). If it is invertible, we can then expect exactly one solution...the least squares solution!)

Example 1 (revisited): Find the least squares solution to the system of linear equations
\[
\begin{bmatrix}
-1 & 2 \\
2 & -3 \\
-1 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
4 \\
1 \\
2
\end{bmatrix}.
\]

Solution. We have that \(A^T A = \begin{bmatrix}
-1 & 2 & -1 \\
2 & -3 & 3 \\
-1 & 3 & 3
\end{bmatrix}\begin{bmatrix}
-1 & 2 \\
2 & -3 \\
-1 & 3
\end{bmatrix} = \begin{bmatrix}
6 & -11 \\
-11 & 22
\end{bmatrix}\) and
\[
A^T b = \begin{bmatrix}
-1 & 2 & -1 \\
2 & -3 & 3
\end{bmatrix}\begin{bmatrix}
4 \\
1 \\
2
\end{bmatrix} = \begin{bmatrix}
-4 \\
11
\end{bmatrix}.
\]
So, using the Theorem, we are looking for solutions to the equation
\[
\begin{bmatrix}
6 & -11 \\
-11 & 22
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
-4 \\
11
\end{bmatrix}.
\]
The augmented matrix \[
\begin{bmatrix}
6 & -11 & -4 \\
-11 & 22 & 11
\end{bmatrix}
\]
is equivalent to \[
\begin{bmatrix}
1 & 0 & 3 \\
0 & 1 & 2
\end{bmatrix}.
\]
Hence the least squares solution is \(\hat{x}_1 = 3\) and \(\hat{x}_2 = 2\).
Example 2: Find the least squares solution to the system of linear equations
\[
\begin{bmatrix}
1 & -2 \\
-1 & 2 \\
0 & 3 \\
2 & 5
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \begin{bmatrix}
3 \\
1 \\
-4 \\
2
\end{bmatrix}.
\]

Solution. We have that \(A^T A = \begin{bmatrix} 1 & -1 & 0 & 2 \\ -1 & 2 & 3 & 5 \\ 0 & 3 & 2 & 5 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 2 \\ 0 & 3 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 6 & 6 \\ 6 & 42 \end{bmatrix} \) and
\[
A^T b = \begin{bmatrix} 1 & -2 & 0 & 2 \\ -1 & 2 & 3 & 5 \\ 0 & 3 & 2 & 5 \end{bmatrix} \begin{bmatrix} 13 \\ 1 \\ -4 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \end{bmatrix}.
\]
The augmented matrix \(\begin{bmatrix} 6 & 6 & 6 \\ 6 & 42 & -6 \end{bmatrix} \) is equivalent to \(\begin{bmatrix} 1 & 0 & 4/3 \\ 0 & 1 & -1/3 \end{bmatrix} \). Hence the least squares solution is \(\hat{x}_1 = 4/3 \) and \(\hat{x}_2 = -1/3 \).

Example 3: Let us imagine that we are studying a physical system that gets hotter over time. Let us also suppose that we expect a linear relationship between time and temperature. That is, we expect time and temperature to be related by a formula of the form
\[T = at + b, \]
where \(T \) is temperature (in degrees Celsius), \(t \) is time (in seconds), and \(a \) and \(b \) are unknown physical constants. We wish to do an experiment to determine the (approximate) values for the constants \(a \) and \(b \). We allow our system to get hot and measure the temperature at various times \(t \). The following table summarizes our findings

<table>
<thead>
<tr>
<th>(t) (sec)</th>
<th>0.5</th>
<th>1.1</th>
<th>1.5</th>
<th>2.1</th>
<th>2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T) (°C)</td>
<td>32.0</td>
<td>33.0</td>
<td>34.2</td>
<td>35.1</td>
<td>35.7</td>
</tr>
</tbody>
</table>

Find the least squares solution to the linear system that arises from this experiment
\[
\begin{align*}
0.5 a + b &= 32.0 \\
1.1 a + b &= 33.0 \\
1.5 a + b &= 34.2 \\
2.1 a + b &= 35.1 \\
2.3 a + b &= 35.7
\end{align*}
\]

Solution. We have that \(A^T A = \begin{bmatrix} 0.5 & 1.1 & 1.5 & 2.1 & 2.3 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0.5 & 1 \\ 1.1 & 1 \\ 1.5 & 1 \\ 2.1 & 1 \\ 2.3 & 1 \end{bmatrix} = \begin{bmatrix} 32.0 \\ 33.0 \\ 34.2 \\ 35.1 \\ 35.7 \end{bmatrix} \) and
\[
A^T b = \begin{bmatrix} 0.5 & 1.1 & 1.5 & 2.1 & 2.3 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 32.0 \\ 33.0 \\ 34.2 \\ 35.1 \\ 35.7 \end{bmatrix} = \begin{bmatrix} 259.42 \\ 170 \end{bmatrix}.
\]
So, using the Theorem, we are looking for solutions to the equation
\[
\begin{bmatrix} 13.41 & 7.5 \\ 7.5 & 5 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 259.42 \\ 170 \end{bmatrix}.
\]
The augmented matrix \[
\begin{bmatrix}
13.41 & 7.5 & 259.42 \\
7.5 & 5 & 170 \\
\end{bmatrix}
\] is equivalent to \[
\begin{bmatrix}
1 & 0 & 2.0463 \\
0 & 1 & 30.93 \\
\end{bmatrix}
\]. Hence, the least squares solution is \(\tilde{a} = 2.0463\) and \(\tilde{b} = 30.93\). That is, \(T(t) = 2.0463t + 30.93\) is the least squares approximation to our problem.

Example 4: The table below is the estimated population of the United States (in millions) rounded to three digits. Suppose there is a linear relationship between time \(t\) and population \(P(t)\). Use this data to predict the U.S. population in 2010.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>population</td>
<td>227</td>
<td>237</td>
<td>249</td>
<td>262</td>
</tr>
</tbody>
</table>

Solution. Let \(t\) denote “years after 1980” and assume that \(P(t) = at + b\). Hence we are looking for the least squares solution to the equation

\[
\begin{bmatrix}
0 & 1 \\
5 & 1 \\
10 & 1 \\
15 & 1 \\
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
\end{bmatrix} = \begin{bmatrix} 227 \\
237 \\
249 \\
262 \\
\end{bmatrix}.
\]

We have that \(A^TA = \begin{bmatrix} 350 & 30 \\
30 & 4 \\
\end{bmatrix}\) and \(A^Tb = \begin{bmatrix} 7605 \\
975 \\
\end{bmatrix}\). So, using the Theorem, we are looking for solutions to the equation

\[
\begin{bmatrix} 350 & 30 \\
30 & 4 \\
\end{bmatrix}
\begin{bmatrix} a \\
b \\
\end{bmatrix} = \begin{bmatrix} 7605 \\
975 \\
\end{bmatrix}.
\]

The augmented matrix \[
\begin{bmatrix} 350 & 30 & 7605 \\
30 & 4 & 975 \\
\end{bmatrix}
\] is equivalent to \[
\begin{bmatrix} 1 & 0 & 117/50 \\
0 & 1 & 1131/5 \\
\end{bmatrix}.
\] So the least squares approximation is \(P(t) = 117/50 \cdot t + 1131/5\). Thus, the population in 2010 is expected to be \(P(30) = 296\), if we use this least squares approximation.

We now revisit the previous problem.

Example 5 (an exponential fit): In population studies, exponential models are much more commonly used than linear models. This means that we hope to find constants \(a\) and \(b\) such that the population \(P(t)\) is given approximately by the equation \(P(t) = a e^{bt}\). To convert this into a linear equation, we take the natural logarithm of both sides, producing

\[
\ln P(t) = \ln a + bt.
\]

Use the method of least squares to find values for \(\ln a\) and \(b\) that best fit the data of Example 4.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(population)</td>
<td>5.425</td>
<td>5.468</td>
<td>5.517</td>
<td>5.568</td>
</tr>
</tbody>
</table>

Solution. As before, let \(t\) denote “years after 1980” and assume that \(\ln P(t) = \ln a + bt\). Hence we are looking for the least squares solution to the equation

\[
\begin{bmatrix}
1 & 0 \\
1 & 5 \\
1 & 10 \\
1 & 15 \\
\end{bmatrix}
\begin{bmatrix}
\ln a \\
b \\
\end{bmatrix} = \begin{bmatrix} 5.425 \\
5.468 \\
5.517 \\
5.568 \\
\end{bmatrix}.
\]

We have that \(A^TA = \begin{bmatrix} 1 & 1 & 1 & 1 \\
0 & 5 & 10 & 15 \\
\end{bmatrix}
\begin{bmatrix} 1 \\
0 \\
1 \\
10 \\
15 \\
\end{bmatrix} = \begin{bmatrix} 4 & 30 \\
30 & 350 \\
\end{bmatrix}\) and
\[A^T b = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 5 & 10 & 15 \end{bmatrix} \begin{bmatrix} 5.425 \\ 5.468 \\ 5.517 \\ 5.568 \end{bmatrix} = \begin{bmatrix} 21.978 \\ 166.03 \end{bmatrix}. \]

So, using the Theorem, we are looking for solutions to the equation

\[
\begin{bmatrix} 4 & 30 \\ 30 & 350 \end{bmatrix} \begin{bmatrix} \ln a \\ b \end{bmatrix} = \begin{bmatrix} 21.978 \\ 166.03 \end{bmatrix}.
\]

The augmented matrix \[
\begin{bmatrix} 4 & 30 & 21.978 \\ 30 & 350 & 166.03 \end{bmatrix}
\]
is row equivalent to \[
\begin{bmatrix} 1 & 0 & 5.423 \\ 0 & 1 & .00956 \end{bmatrix}.
\]

This means that \(\ln a = 5.423 \), so \(a = 226.558 \). Hence, the least squares solution is \(P(t) = 226.558e^{.00956t} \), and, thus, \(P(30) = 301.81 \).

\(\square \)

Note: The actual U.S. population in 2010 was 309 million people.

References

