1 Glivenko-Cantelli type theorems

Given i.i.d. observations $X_1, ..., X_n$ with unknown distribution function $F(t)$, consider the empirical (sample) CDF

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^{n} I_{[X_i \leq t]}.$$

Then as $n \to \infty$,

$$\sup_{-\infty < t < \infty} |\hat{F}_n(t) - F(t)| \xrightarrow{a.s.} 0$$

Without the sup (i.e. for a fixed t) this is just an ordinary LLN for Bernoulli r.v.s The difficult (and usefulness) is in the sup. Notice that $F(t) = P(X \leq t) = P(X \in (-\infty, t])$, where $(-\infty, t]$ can be considered as a set A (indexed by t). And the Glivenko-Cantelli theorem can be rewritten as:

$$\sup_A \left| \int_A d[\hat{F}_n(s) - F(s)] \right| \xrightarrow{a.s.} 0$$

Does the following convergence hold if A is any Lebesgue measurable set in \mathbb{R}?

$$\sup_{A \in \mathcal{F}} \left| \int_A d[\hat{F}_n(s) - F(s)] \right| \xrightarrow{a.s.} 0$$

We know the following:

(1) if $\mathcal{F} = \{(-\infty, t], \forall t \in \mathbb{R}\}$, then the uniform convergence holds;

(1.5) if $\mathcal{F} = \{(a, b], \text{for any real } a < b\}$, then the uniform convergence holds;

(2) if $\mathcal{F} = \{\text{all measurable sets}\}$, then the uniform convergence doesn’t hold;

(3) if $\mathcal{F} = \text{Vapnik-Chervonenkis (V-C) sets}$, then the uniform convergence holds.

We shall see that the key is $\mathcal{F} \cap \{x_1, x_2, \cdots, x_n\}$ should have n^k (polynomials many) different sets, not exponentially many (2^n).

1.1 The proof of Glivenko-Cantelli theorem

Suppose $X_1, ..., X_n \overset{i.i.d.}{\sim} F(t)$, and $Y_1, ..., Y_n \overset{i.i.d.}{\sim} F(t)$ (same CDF). Also assume X’s are independent of Y’s. Let

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^{n} I_{[X_i \leq t]}$$

and

$$F^*_n(t) = \frac{1}{n} \sum_{i=1}^{n} I_{[Y_i \leq t]}$$

Step 1: Symmetrization (See Page 14 of Pollard for details)

$$\forall \epsilon > 0; \quad P(\sup_{-\infty < t < \infty} |\hat{F}_n(t) - F(t)| > \epsilon)$$

$$\leq 2P(\sup_{-\infty < t < \infty} |(\hat{F}_n(t) - F(t)) - (F^*_n(t) - F(t))| > \frac{\epsilon}{2})$$

$$= 2P(\sup_{-\infty < t < \infty} |\hat{F}_n(t) - F^*_n(t)| > \frac{\epsilon}{2})$$
Since \(\hat{F}_n(t) \) and \(F_n^*(t) \) are piecewise constant functions, thus \(|\hat{F}_n(t) - F_n^*(t)| \) has at most \((2n + 1)\) different values when \(-\infty < t < \infty\).

Step 2: Turn infinite many “Sup” to finite many “Max”, corresponding to \((2n+1)\) different values.

\[
2P\left(\sup_{-\infty < t < \infty} |\hat{F}_n(t) - F_n^*(t)| > \frac{\epsilon}{2} \right) = 2P\left(\max_{t = t_1, \ldots, t_{2n+1}} |\hat{F}_n(t) - F_n^*(t)| > \frac{\epsilon}{2} \right)
\]
\[
= 2P\left(\bigcup_{i=1}^{2n+1} |\hat{F}_n(t_i) - F_n^*(t_i)| > \frac{\epsilon}{2} \right)
\]
\[
\leq 2 \sum_{i=1}^{2n+1} P(|\hat{F}_n(t_i) - F_n^*(t_i)| > \frac{\epsilon}{2}) \quad \text{(By Boole's ineq.)}
\]

Step 3: Hoeffding’s Inequality (Pollard, 1984)

Suppose \(Y_1^*, \ldots, Y_n^* \) are independent with \(EY_i^* = 0 \) (Mean 0) and \(a_i \leq Y_i^* \leq b_i \) (bounded) then,

\[
\forall \eta > 0, \quad P(|Y_1^* + Y_2^* + \ldots + Y_n^*| > \eta) \leq 2e^{\frac{-\eta^2}{2\sum_{i=1}^{n}(b_i-a_i)^2}}.
\]

Let

\[
Y_i^* = \frac{1}{n}(I_{[X_i \leq t]} - I_{[Y_i \leq t]})
\]

then we have

\[
-\frac{1}{n} \leq Y_i^* \leq \frac{1}{n}
\]

and \(E(Y_i^*) = 0 \). Thus Hoeffding’s Inequality can be applied to \(|\hat{F}_n(t_i) - F_n^*(t_i)|\), with \(\eta = \frac{\epsilon}{2} \)

\[
2 \sum_{i=1}^{2n+1} P(|\hat{F}_n(t_i) - F_n^*(t_i)| > \frac{\epsilon}{2}) \leq 2 \sum_{i=1}^{2n+1} 2 \exp\left(\frac{-2(\frac{\epsilon}{2})^2}{(\frac{1}{2n})^2}\right)
\]
\[
= (8n + 4)e^{-\frac{n^2}{8}}
\]
\[
\rightarrow 0 \quad \text{as} \ n \rightarrow \infty
\]

Remarks:

1. The above inequality holds for any \(\epsilon > 0 \) and any \(n \). So we actually proved

\[
P\left(\sup_{-\infty < t < \infty} |\hat{F}_n(t) - F(t)| > \epsilon \right) \leq (8n + 4)e^{-\frac{n^2}{8}}; \quad (1)
\]

2. It is worth noting that how fast this bound \((8n + 4)e^{-\frac{n^2}{8}}\) goes to 0. For example, \[\sum_{n=1}^{\infty}(8n + 4)e^{-\frac{n^2}{8}} < \infty\], an application of Borel-Cantalli lemma turns this into a.s. convergence. so Glivenko-Cantelli is almost surely converge. This also works if we replace \((8n + 4)\) with any polynomials of \(n \) like \(n^k \).
1.2 Generalizations

Many generalizations are possible.

1. The random variables X_1, X_2, \cdots, X_n need only be independent; and do not have to be identically distributed. The limiting distribution is then $\bar{F}_n(t) = 1/n \sum F_i(t)$. (The limit is always obtained by replace the random variables by the expectations)

2. The constant $1/n$ may be replaced by other constants or a sequence of n constants: a_1, a_2, \cdots, a_n. The result will be

$$P\left(\sup_{-\infty < t < \infty} \sum_{i=1}^{n} |a_i I[X_i \leq t] - a_i F_i(t)| > \epsilon \right) \leq (8n + 4) \exp \left[-\frac{\epsilon^2}{8 \sum_{i=1}^{n} 1/a_i^2} \right];$$

3. The limit do not have to be distribution functions. Any bounded non random function will do. In particular a sub-distribution function.

$$\sup_t \sum_{i=1}^{n} a_i |I[X_i \leq t, \delta_i = 1] - U_i(t)|$$

where $U_i(t) = E[I[X_i \leq t, \delta_i = 1]]$.

Exercise:

Suppose, as $n \to \infty$ we have

$$\sup_{-\infty < t < \infty} \frac{1}{n} |N(t) - EN(t)| \rightarrow^{a.s.} 0 \quad \text{and} \quad \sup_{-\infty < t < \infty} \frac{1}{n} |R(t) - ER(t)| \rightarrow^{a.s.} 0$$

as $n \to \infty$. Show that

$$\int_{0}^{t} \frac{dN(s)}{R(s)} \rightarrow \int_{0}^{t} \frac{dEN(s)}{ER(s)}$$

again, uniformly for those t that $ER(t) > \eta > 0$.

Furthermore, suppose $g(t)$ is a function that the integral in the limit below is well defined. Let $g_n(t)$ be a random sequence of functions that

$$\sup_{-\infty < t < \infty} |g_n(t) - g(t)| \rightarrow^{a.s.} 0.$$

Show that

$$\int_{0}^{t} \frac{g_n(s)dN(s)}{R(s)} \rightarrow \int_{0}^{t} \frac{g(s)dEN(s)}{ER(s)}$$

again, uniformly for those t that $ER(t) > \eta > 0$.
Let

\[\mathcal{F} = \{ A_t = (-\infty, t], -\infty < t < \infty \} \]

\[A_t \cap \{ x_1, \ldots, x_n \} = \{ \phi \}, \{ x_1 \}, \{ x_1 x_2 \}, \ldots, \{ x_1 \ldots x_n \} \]

(WLOG assume the \(x_i \)'s are ordered.) The number of all subsets of \(\{ x_1, \ldots, x_n \} \) is \(2^n \), but the number of all sets of the form \(A_t \cap \{ x_1, \ldots, x_n \} \) is \((n + 1) \). In general, if the number of all sets of the type \(A \cap \{ x_1, \ldots, x_n \} \) is a polynomial function in \(n \) (i.e. \(O(n^k) \ll 2^n \)), then the sets contained in \(A \) is a V-C class of sets.

For example, if \(A = A_{ab} = (a, b], -\infty < a < b < \infty \), then the number of all sets of type \(A_{ab} \cap \{ x_1, \ldots, x_n \} \) is \(\frac{n(n+1)}{2} + 1 \) (including empty set). Therefore the sets of \(A_{ab} = (a, b] \) is a V-C class of sets.

Claim: If and only if \(\mathcal{F} \) is a V-C class of sets, then

\[
P(\sup_{A \in \mathcal{F}} | \int I_{[A]} d\hat{F}_n(t) - \int I_{[A]} dF(t) | > \epsilon) \to 0
\]

1.3 Applications

In the Cox model, the Breslow estimate of Baseline hazard and Fisher information matrix.

\[
\hat{\Lambda}_0(t) = \int_0^t \frac{1}{n} \sum_{i=1}^{n} \frac{dN(s)}{I[Y_i \geq s]e^{\beta z_i}}
\]

We focus on the denominator.

\[
P\left(\sup_s \left| \frac{1}{n} \sum_{i=1}^{n} I[Y_i \geq s]e^{\beta z_i} - \frac{1}{n} \sum_{i=1}^{n} P(Y_i \geq s)e^{\beta z_i} \right| > \epsilon \right)
\]

\[
\leq (8n + 4)e^{-\frac{\epsilon^2}{8nM^2}} \quad (\text{Condition : } |z_i| \leq M < \infty)
\]

Where

\[
P(Y_i \geq s) = P(T_i \geq s)P(C_i \geq s) = e^{\Lambda_0(s)}[1 - G(s)] = e^{\Lambda_0(s)e^{\beta z_i}}[1 - G(s)]
\]

Similar for Fisher information matrix

\[
\frac{1}{n} \sum_{i=1}^{n} z_i^2 I[Y_i \geq s]e^{\beta z_i}
\]
The Glivenko-Cantelli can also be formulated for functions.

\[P\left(\sup_{f \in \mathcal{F}} \left| \int f(x)d\hat{F}_n(x) - \int f(x)dF(x) \right| > \epsilon \right) = P\left(\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f(x_i) - \int f(x)dF(x) \right| > \epsilon \)

What is the condition on \(\mathcal{F} \) to make above \(\to 0 \)?

V-C class of function: if a function’s graph is a V-C class of sets.

\[f(x) \iff \text{graph}\{(x,y)|f(x) > y\} \]

More dimensions (example: 2 dimensions)
The number of all sets of \(A \cap \{x_1, \ldots, x_n\} \) is a polynomial function in \(n \) \(\Rightarrow A = \text{rectangles} \in \) “V-C class of sets”

Hence the Glivenko-Cantelli convergence works in 2 dimensions etc.

Homework:

Is the following true? Prove if it is true.

\[\sup_{-\infty < t \leq x(n)} \left| \frac{1}{1 - \hat{F}_n(t)} - \frac{1}{1 - F(t)} \right| \xrightarrow{a.s.} 0 \]

If not, what bound instead of \(x(n) \) will make the convergence hold?

Homework: Suppose \(\hat{\Lambda}_n(t) \) is the Nelson-Aalen estimator based on \(n \) right censored observations, and the \(\Lambda(t) \) is the true cumulative hazard. Assume \(\Lambda(t) \) is continuous, also assume \(\Lambda(t) \uparrow \infty \) as \(t \uparrow \infty \). Show that, as \(n \to \infty \)

\[\sup_{t \leq M} |\hat{\Lambda}_n(t) - \Lambda(t)| \to 0 \]

either in probability or almost surely.

Any speed? Can we make it \(\sup_{t<\infty} \)?

2 Empirical Likelihood and Bootstrap

The idea of Bootstrap: In the correspondence (or the link between that) of \(\hat{F}_n(\cdot) \rightarrow (\hat{\theta}_n - \theta_0)\), bootstrap apply a random perturb to the \(\hat{F}_n\), and see how \((\hat{\theta}_n - \theta_0)\) change accordingly. Repeat this many times and you have a sampling distribution of \((\hat{\theta}_n - \theta_0)\). The random perturbation is obtained by a random sampling (or re-sampling) to \(\hat{F}_n\).

The idea of Empirical Likelihood: In the correspondence of \(\hat{F}_n(\cdot) \rightarrow \hat{\theta}_n\), EL force the statistic \(\hat{\theta}_n\) to the value \(\theta_0\), and find the tilted \(\hat{F}_n\) that corresponding to this perturbed \(\hat{\theta}_n\). We denote the tilted distribution as \(\hat{F}_n^\lambda\) for some nonzero \(\lambda\).

It turns out

\[
-2 \log \frac{EL(\hat{F}_n^\lambda)}{EL(\hat{F}_n)}
\]

will have a chi square distribution, a pivotal distribution when \(\theta_0\) is the true value of the parameter.

Under null hypothesis, the perturbation of \(\hat{\theta}_n\) to \(\theta_0\) is of order \(1/\sqrt{n}\) (usually). In bootstrap, the perturbation of re-sampling to \(\hat{F}_n\) is also of order \(1/\sqrt{n}\).

The difference: the bootstrap is a random perturbation but EL is a fixed perturbation, so bootstrap usually need simulation to repeat many times, and result may be slightly difference due to random re-sample errors. On the other hand, bootstrap can be applied to any statistic, but EL works most successfully for the case \(\hat{\theta}\) is NPMLE. (has anyone try it on non-MLE?) In some setup, it may not be clear how a random perturbation should be applied to the \(\hat{F}\) because there are several plausible ways to do it. On the other hand, for EL there is usually clear, and only one way to set \(\hat{\theta}\) to \(\theta_0\).

Bootstrap needs to estimate a whole distribution (or percentile), and the EL can rely on the fact that the distribution of the likelihood ratio is a pivotal chi square.

The introduction of the \(\lambda\) turns the non-parametric problem into a parametric problem. In the new parametric problem, we are estimate the “true” value of zero, and the information of \(\lambda\) is just the negative second derivative of the log likelihood and the MLE is \(\hat{\lambda}_n\) which has an asymptotic normal distribution. This sub-family of parametric distributions are the so-called least favorable sub-distributions, an idea first proposed by Stone in 1956.
For any (square) integrable function $\phi(t)$ and a distribution $F(\cdot)$, define

$$\tilde{\phi}(t) = \tilde{\phi}_F(t) = \frac{1}{1 - F(t)} \int_{(t, \tau_F]} \phi(u) dF(u)$$

where $\tau_F = \sup\{x : F(x) < 1\}$.

Theorem Denote the Kaplan-Meier estimator based on n i.i.d. observations as \hat{F}_n. We have

$$\frac{1}{1 - \hat{F}_n(t)} \int_{(t, \tau_{\hat{F}_n}]} \phi(u) d\hat{F}_n(u) \rightarrow \frac{1}{1 - F(t)} \int_{(t, \tau_F]} \phi(u) dF(u)$$

that is

$$\tilde{\phi}_{\hat{F}_n}(t) \rightarrow \tilde{\phi}_F(t)$$

The convergence is uniformly, almost sure, i.e.

$$\sup_t |\tilde{\phi}_{\hat{F}_n}(t) - \tilde{\phi}_F(t)| \rightarrow 0, \ a.s.$$

Theorem Assume $\phi(t)$ is square integrable with respect to $F(t)$. Then we have

$$\int [\phi(t) - \tilde{\phi}_F(t)]^2 d\hat{F}_n(t) \rightarrow \int [\phi(t) - \tilde{\phi}_F(t)]^2 dF(t)$$
Akritas (2000) studied the central limit theorem for the Kaplan-Meier integrals. There are earlier papers about the same topic, but the asymptotic variance expression of Akritas (2000) is new and interesting.

Theorem (Akritas 2000) The asymptotic variance of Kaplan-Meier integrals are

\[\text{AsyVar} \left(\sqrt{n} \int \phi(t) d\hat{F}_{KM}(t) \right) = \int_{-\infty}^{\tau} [\phi(t) - \bar{\phi}(t)]^2 \frac{[1 - F(t)]dF(t)}{1 - H(t^-)} . \]

A multivariate version of this theorem can be easily obtained. Denote \(\Phi(\cdot) = (\phi_1(\cdot), \cdots, \phi_k(\cdot)) \), then the asymptotic variance-covariance matrix of the \(k \)-vector of Kaplan-Meier integrals is

\[\text{AsyVarCov} \left(\sqrt{n} \int \Phi(t) d\hat{F}_{KM}(t) \right) = [\sigma_{ij}] , \]

with

\[\sigma_{ij} = \int_{-\infty}^{\tau} [\phi_i(t) - \bar{\phi}_i(t)][\phi_j(t) - \bar{\phi}_j(t)] \frac{[1 - F(t)]dF(t)}{1 - H(t^-)} . \]

This multivariate version can be obtained by using the representation of Akritas (2000), his Theorem 6.

An easier to check sufficient condition to insure the variance are well defined is

\[\int_{-\infty}^{\tau} \frac{\phi^2(s)}{1 - G(s^-)} dF(s) < \infty . \]

When there is no censoring, the Kaplan-Meier estimator become the empirical distribution and the integral with respect to empirical distribution is just the i.i.d. summation (or average). Finally, when there is no censoring \(1 - H(s^-) = 1 - F(s^-) \), the covariance formula of Akritas above simplify to the following

\[\text{AsyCov} \left(\frac{1}{\sqrt{n}} \sum_{u=1}^{n} \phi_i(X_u), \frac{1}{\sqrt{n}} \sum_{u=1}^{n} \phi_j(X_u) \right) \]

can be written as

\[\int_{-\infty}^{\tau} [\phi_i(t) - \bar{\phi}_i(t)][\phi_j(t) - \bar{\phi}_j(t)] \frac{[1 - F(t)]dF(t)}{1 - F(t^-)} . \]

On the other hand, the said covariance can obviously be written as

\[\int_{-\infty}^{\tau} [\phi_i(t) - E\phi_i][\phi_j(t) - E\phi_j]dF(t) . \]

We, therefore, arrive at the following identity

Lemma For function \(\phi_i \) and \(\phi_j \) that are square integrable with respect to \(F(t) \) we have

\[\int_{-\infty}^{\tau} [\phi_i(t) - \bar{\phi}_i(t)][\phi_j(t) - \bar{\phi}_j(t)] \frac{[1 - F(t)]dF(t)}{1 - F(t^-)} = \int_{-\infty}^{\tau} [\phi_i(t) - E\phi_i][\phi_j(t) - E\phi_j]dF(t) . \]

When either the expectations \(E\phi_i = 0 \) or \(E\phi_j = 0 \) or both, the above identity can further be simplified to

\[\int_{-\infty}^{\tau} [\phi_i(t) - \bar{\phi}_i(t)][\phi_j(t) - \bar{\phi}_j(t)] \frac{[1 - F(t)]dF(t)}{1 - F(t^-)} = \int_{-\infty}^{\tau} [\phi_i(t)][\phi_j(t)]dF(t) . \]

We comment that this identity holds for any distribution \(F(\cdot) \), we later will use this when \(F(t) \) is the Kaplan-Meier distribution.
A general empirical likelihood theorem. For a sample of n independent observations with distribution belongs to a family $F_n(\beta)$ here β is the finite dimensional parameter, F_n can be nonparametric. If there exist a distribution F_0n such that $F_n \ll F_0n$, that is all distributions are dominated by a single (but can depend on n) distribution F_0n, then empirical likelihood works for test the finite parameter β of the distributions F_n.