Lee, Chapter 4

Exercise 10 Let S be the square $I \times I$ with the order topology generated by the dictionary topology.

(a) Show that S has the least upper bound property.

(b) Show that S is connected.

(c) Show that S is locally connected but not locally path-connected.

Proof. (a) Let $A \subseteq S$. For each $a \in A$, $(0, 0) \leq a \leq (1, 1)$, so A is bounded (above). Now, for each $t \in I$, if $(I \times \{t\}) \cap A \neq \emptyset$, then $(I \times \{t\}) \cap A$ has a least upper bound α_t. Similarly, for each $t \in I$, if $(\{t\} \times I) \cap A \neq \emptyset$ then $(\{t\} \times I) \cap A$ has a least upper bound β_t. Now, $\{\alpha_t\}_{t \in I}$ and $\{\beta_t\}_{t \in I}$ are bounded subsets of \mathbb{R}, so they have least upper bounds α and β, respectively. It follows that for each $(a_1, a_2) \in A$, $a_1 \leq \alpha$ and $a_2 \leq \beta$, so $(a_1, a_2) \leq (\alpha, \beta)$, making (α, β) an upper bound of A. Now, suppose $(\gamma, \delta) < (\alpha, \beta)$ is an upper bound of A. Then for all $(a_1, a_2) \in A$, $a_1 \leq \gamma < \alpha$ or $\gamma = \alpha$ and $a_2 \leq \delta < \beta$. But, since α is the least upper bound of the “x-coordinates” of A and β is the least upper bound of the “y-coordinates” of A, both of these statements are contradictions. As a result, $(\gamma, \delta) \geq (\alpha, \beta)$ for all upper bounds (γ, δ) of A, making (α, β) the least upper bound of A by definition.

(b) Suppose S is not connected. Then there exist disjoint, nonempty open subsets H and K such that $H \cup K = S$. Without loss of generality, assume $(1, 1) \in K$. Now, K contains some neighborhood of $(1, 1)$, so $(\alpha, \beta) = \sup(H) \neq 1$. Since $H \cup K = S$ and H and K are both open, (α, β) is an element of some neighborhood which is a subset of either H or K. But, any neighborhood of (α, β) contains a set of the form $\{s \in S \mid r < s < t\}$ for some $r, t \in S$, which intersects both H and K. This is a contradiction, so S is connected.

(c) For any $(s_1, s_2) \in S$, the closed neighborhoods $\{(t_1, t_2) \in S \mid (s_1 - \frac{1}{n}, s_2 - \frac{1}{n}) \leq (t_1, t_2) \leq (s_1 + \frac{1}{n}, s_2 + \frac{1}{n})\}_{n \in \mathbb{N}}$ of s are homeomorphic to either I or S, each of which is connected. Consequently, each neighborhood of s contains a connected neighborhood of s, making S locally connected.
Exercise 11 Let X be a topological space, and let $C(X)$ be the cone on X.

(a) Show that $C(X)$ is path-connected.

(b) Show that $C(X)$ is locally (path)-connected iff X is.

Proof. (a) Let $\{C_\alpha\}_{\alpha \in A}$ be the path-components of X. Notice that each $C(C_\alpha)$ is a path-connected subspace of $C(X)$. Now, let ξ be the “tip” of the cone, and let $x, y \in C(X)$. If $x, y \in C_\alpha$, then the proof is trivial, so assume $x \in C(C_\alpha)$ and $y \in C(C_\beta)$, where $\alpha \neq \beta$. Then there exists a path $\gamma : I \to C(C_\alpha)$ such that $\gamma(0) = x$ and $\gamma(1) = \xi$, and a path $\delta : I \to C(C_\beta)$ such that $\delta(0) = \xi$ and $\delta(1) = y$. If we concatenate these paths, we get a path $\epsilon : I \to C(X)$, where $\epsilon(t) = \gamma(2t)$ when $0 \leq t \leq \frac{1}{2}$, and $\epsilon(t) = \delta(2t - 1)$ when $\frac{1}{2} \leq t \leq 1$. Hence, $C(X)$ is path-connected.

(b) First we will prove that $C(X)$ is locally connected iff X is.

(\Rightarrow)
Exercise 13 Let T be the topologist’s sine curve.

(a) Show that T is connected but not path-connected or locally connected.

(b) Determine the components and the path-components of T.

Proof. (a) Suppose T is disconnected. Then there exist disjoint, nonempty open subsets H and K such that $H \cup K = T$. Notice that T_0 and T_+ are both connected and path-connected, so there is no disjoint union of open sets equal to either piece of T. Thus, without loss of generality, suppose $T_0 \subset H$. But any open set which contains T_0 also contains an open subset H_{T_+} of T_+ such that $H_{T_+} \cup K = T_+$. This is a contradiction, so T is connected. However, suppose a path $\gamma : I \to T$ exists such that $\gamma(0) = (\frac{1}{2\pi}, 0)$ and $\gamma(1) = (0, 0)$. Now, consider the point $\tau = \inf\{t \in I \mid \gamma(t) \in T_0\}$. It follows that the image $\gamma([0, \tau])$ has at most one element of T_0, but notice that $T_0 \subseteq \overline{\gamma([0, \tau])}$, so $\gamma([0, \tau]) \neq \overline{\gamma([0, \tau])}$ and thus $\gamma([0, \tau])$ is not closed. But $\gamma([0, \tau])$ is the continuous image of a compact set of \mathbb{R}, which is closed in \mathbb{R}. This is a contradiction, so no such path can exist and T is not path-connected. Finally, T is not locally connected, because the intersection of T and the ball of radius $\frac{1}{2}$ contains no connected neighborhood.

(b) Since T is connected, T has only one component - namely, T itself. Now, notice in the discussion above that the non-existence of the path γ did not depend on the exact location of the point in T_+; it only depended on the fact that $(\frac{1}{2\pi})$ was in T_+ and not in T_0. Now, T_0 and T_+ are path-connected and, in fact, they are the path-components of T. ■
Exercise 15 Suppose G is a topological group.

(a) Show that every open subgroup of G is also closed.

(b) For any neighborhood U of 1, show that the group $\langle U \rangle$ generated by U is open and closed in G.

(c) For any connected subset $U \subseteq G$ containing 1, show that $\langle U \rangle$ is connected.

(d) Show that if G is connected, then every connected neighborhood of 1 generates G.

Proof. (a) Suppose $H \subseteq G$ is an open subgroup, and consider $G - H$. This is equal to $\bigcup_{g \in G - H} (gH)$. Further, since H is open and left translation is a homeomorphism, each gH is open, so $G - H$ is open. Therefore, H is closed.

(b) The group $\langle U \rangle$ is equal to $\bigcup_{g \in G} (gU)$, which is an open subgroup, so by (a), $\langle U \rangle$ is open and closed in G.

\[\blacksquare \]
Willard, Section 23

Problem A

Exercise 1 Prove that the looped line is metrizable.
Proof. By exercise 14A(4), the looped line is $T_{3.5}$, so it is T_1 and (completely) regular. Further, $\mathcal{B} = \{(x-q, x+q) \mid x \in \mathbb{Q} - \{0\}, q \in \mathbb{Q}\} \cup \{(-\infty, -n) \cup (-q, q) \cup (n, \infty) \mid q \in \mathbb{Q}, n \in \mathbb{N}\}$ is a countable basis for the looped line, so it is second countable. Finally, by Urysohn’s Metrization Theorem, the slotted line is metrizable. ■

Exercise 2 Prove that the scattered line is not metrizable.
Proof. Clearly the scattered line is T_1, but it is not second countable, since the irrational numbers with the discrete metric have no countable basis. Hence, by the Urysohn Metrization Theorem, the scattered line is not metrizable. ■

Exercise 3 Prove that the disjoint union of metrizable spaces is metrizable.
Proof. Let $\{X_\alpha\}_{\alpha \in A}$ be a collection of metrizable spaces. Construct metrics ρ_α bounded above by 1 for each space X_α. Now, define a metric ρ on $\bigsqcup_{\alpha \in A} X_\alpha$ as follows: $\rho(x, y) = \rho_\alpha(x, y)$ if $x, y \in X_\alpha$ and $\rho(x, y) = 1$ if $x \in X_\alpha, y \in X_\beta, \alpha \neq \beta$. The metric ρ generates the topology of $\bigsqcup_{\alpha \in A} X_\alpha$, so it is metrizable. ■

Exercise 4 Let A be an infinite set, and let X be the “hedgehog space” of spininess $|A|$. Does the metric

$$\rho(x, y) = |x - a| + |a - y|, x \in I_\alpha, y \in I_\beta, \alpha \neq \beta$$
$$\rho(x, y) = |x - y|, x, y \in I_\alpha,$$

where a is the common point of each I_α, generate the topology of X?
Proof. An open subset of X is a union of open subsets $\{U_\beta\}_{\beta \in B}$, where each U_β is open in some I_α. Thus, each U_β is of the form $[a, x)$, (a, b), or $(b, 1]$. Each of these sets can be expressed as an open set in the set X with the metric ρ, so ρ generates the topology on X. ■
Problem C

Prove that, for a locally compact space X, the following are equivalent:

(a) X is separable.

(b) $X = \bigcup_{n=1}^{\infty} K_n$, where K_n is compact and $K_n \subset (K_{n+1})^\circ$.

(c) The one-point compactification X^* of X is metrizable.

Proof.
Problem B

Exercise 1 Prove that the continuous image of a path-connected space is path-connected.

Proof. Let $f : X \to Y$ be continuous, and let X be path-connected. Without loss of generality, we can assume that f is surjective. Then for distinct $y_1, y_2 \in Y$, there are points $x_1, x_2 \in X$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is path-connected, there is a path $\gamma : I \to X$ such that $\gamma(0) = x_1$ and $\gamma(1) = x_2$. Now, because γ is continuous, the composition $f \circ \gamma : I \to Y$ is also continuous. Further, $f(\gamma(0)) = f(x_1) = y_1$ and $f(\gamma(1)) = f(x_2) = y_2$. Hence, $f \circ \gamma$ is a path from y_1 to y_2, and therefore Y is path-connected.

Exercise 2 Prove that the nonempty product of finitely many spaces is path-connected iff each factor space is connected.

Proof. (\Rightarrow) Suppose X_1, X_2, \ldots, X_n are topological spaces, and $X = \prod_{i=1}^{n} X_i$ is path-connected. Let $i, 1 \leq i \leq n$ be arbitrary, and consider distinct points $x_i, y_i \in X_i$. Then $x = (x_1, x_2, \ldots, x_i, \ldots, x_n)$ and $y = (x_1, x_2, \ldots, y_i, \ldots, x_n)$ are distinct points in X for arbitrary $x_j \in X_j, j \neq i$, so there is a path $\gamma : I \to X$ such that $\gamma(0) = x$ and $\gamma(1) = y$. Since π_i is continuous, so too is $\pi_i \circ \gamma : I \to X_i$. Further, $\pi_i(\gamma(0)) = x_i$ and $\pi_i(\gamma(1)) = y_i$, making $\pi_i \circ \gamma$ a path from x_i to y_i. Because i, x_i, and y_i were arbitrary, it follows that each X_i is path-connected.

(\Leftarrow) Suppose each X_1, X_2, \ldots, X_n is path-connected. Let $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n)$ be distinct points in X. Now, $\{a_1\} \times \{a_2\} \times \ldots \times X_i \times \ldots \times \{a_n\}$ is homeomorphic to X_i for each i and for each $a = (a_1, a_2, \ldots, a_n) \in X$, and path-connectedness is preserved by homeomorphism. In short, there exist paths $\gamma_i : I \to (\{y_1\} \times \{y_2\} \times \ldots \times \{y_{i-1}\} \times X_i \times \{x_{i+1}\} \ldots \times \{x_n\})$ such that $\gamma(0) = (y_1, y_2, \ldots, y_{i-1}, x_i, x_{i+1}, \ldots, x_n)$ and $\gamma(1) = (y_1, y_2, \ldots, y_{i-1}, y_i, x_{i+1}, \ldots, x_n)$. Because X is a finite product, we can concatenate the γ_i's into a well-defined, continuous path $\gamma : I \to X$ from x to y, proving that X is path-connected.