Exercise 1 Define \(f : (−\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R} \) by \(f(0) = 0 \), and \(f(x) = \frac{x−\sin(x)}{1−\cos(x)} \) if \(x \neq 0 \).

(a) Show that \(f \) is continuous at \(x = 0 \).

(b) Show that \(f \) is strictly increasing, and that the image of the interval is all of \(\mathbb{R} \).

Proof. (a) To prove that \(f \) is continuous at 0, it will suffice to use L'Hôpital's Rule to show that \(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) = 0 \). Let \(g(x) = x − \sin(x) \), and \(h(x) = 1 − \cos(x) \). Then \(g \) and \(h \) are both twice differentiable for all \(x \in \mathbb{R} \), where \(g'(x) = 1 − \cos(x) \), \(g''(x) = \sin(x) \), \(h'(x) = \sin(x) \), and \(h''(x) = \cos(x) \). Now, notice that for each \(x \in (−\frac{\pi}{2}, 0) \), \(h(x) \neq 0 \) \(\neq h'(x) \) \(\neq 0 \) \(\neq h''(x) \), \(\lim_{x \to 0^-} g(x) = 0 = \lim_{x \to 0^+} h(x) \), and \(\lim_{x \to 0^-} g'(x) = 0 = \lim_{x \to 0^+} h'(x) \), so by two iterations of L'Hôpital's Rule,

\[
\lim_{x \to 0^-} \frac{x − \sin(x)}{1 − \cos(x)} = \lim_{x \to 0^-} \frac{1 − \cos(x)}{\sin(x)} = \lim_{x \to 0^-} \frac{\sin(x)}{\cos(x)}.
\]

Now, \(\frac{\sin(x)}{\cos(x)} \) is continuous at \(x = 0 \), and \(\frac{\sin(0)}{\cos(0)} = 0 \), so

\[
\lim_{x \to 0^-} \frac{x − \sin(x)}{1 − \cos(x)} = 0.
\]

A similar argument on \((0, \frac{\pi}{2}) \) gives us

\[
\lim_{x \to 0^+} \frac{x − \sin(x)}{1 − \cos(x)} = 0.
\]

(b) Note that since \(f(−x) = \frac{(−x)−\sin(−x)}{1−\cos(−x)} = −\frac{x−\sin(x)}{1−\cos(x)} = −f(x) \), \(f \) is an odd function. Now, let \(A = (−a, a) \subseteq \mathbb{R} \), and let \(\omega : A \to \mathbb{R} \) be an odd function. Then for \(\alpha, \beta \in A \), if \(\alpha < \beta \leq 0 \) implies \(\omega(\alpha) < \omega(\beta) \), then \(\omega(−\beta) = −\omega(\beta) < −\omega(\alpha) = \omega(−\alpha) \). In short, if \(\omega \) is strictly increasing on \((−a, 0] \), then it is increasing on \([0, a] \) and thus \((−a, a) \). Hence, it suffices to show that \(f \) is strictly increasing on the interval \((−\frac{\pi}{2}, 0] \). Consider the numerator \(g(x) = x − \sin(x) \) and the denominator \(h(x) = 1 − \cos(x) \). Note that on \((−\frac{\pi}{2}, 0) \), \(g'(x) = 1 − \cos(x) > 0 \), so by Page 104 Exercise 5, \(g \) is strictly increasing. Further, \(h'(x) = \sin(x) < 0 \), so \(h \) is decreasing. As a result, \(f = \frac{g}{h} \) is increasing on \((−\frac{\pi}{2}, 0) \). Finally, note that \(f(0) = 0 \), and if \(c < 0 \), \(f(c) < 0 = f(0) \), so \(f \) is strictly increasing on \((−\frac{\pi}{2}, 0] \). To prove that the image of \((−2\pi, 2\pi) \) is \(\mathbb{R} \), note that \(\lim_{x \to 2\pi^-} f(x) = +\infty \) and \(\lim_{x \to −2\pi^+} f(x) = −\infty \), and since \(f \) is increasing on this interval, \(f((−\pi, \pi)) = (−\infty, \infty) = \mathbb{R} \). \(\blacksquare \)
Exercise 1 (a) Suppose f is a continuous, real-valued function on the interval $[a,b]$. Prove that there exists $c \in [a,b]$ such that $\int_a^b f(x)\,dx = f(c)(b-a)$.

Proof. Let $F(x) = \int_a^x f(t)\,dt$. Now, F is continuous and differentiable on $[a,b]$, so by the Mean Value Theorem, there is a $c \in (a,b)$ such that $\frac{F(b) - F(a)}{b-a} = F'(c)$ or, equivalently, $F(b) - F(a) = F'(c)(b-a)$. But, by the Fundamental Theorem of Calculus, $F(b) - F(a) = \int_a^b f(x)\,dx$, and by differentiation of the integral, $F'(c) = f(c)$, so we get $\int_a^b f(x)\,dx = f(c)(b-a)$, thus completing the proof. ■