Chapter 7

Exercise 2 Suppose X is a topological space and g is any path in X from p to q. Let $\Phi_g : \pi_1(X, p) \to \pi_1(X, q)$ be the group isomorphism defined by $\Phi_g[\gamma] = [g] \cdot [\gamma] \cdot [g]$.

(a) Show that if h is another path in X starting at q, then $\Phi_{g \cdot h} = \Phi_h \circ \Phi_g$.

(b) Suppose $\psi : X \to y$ is continuous and show that $\Phi_{\psi \circ g} \circ \psi_* = \psi_* \circ \Phi_g$.

Proof.

(a) By algebra and what we know about path composition, for any $[\gamma] \in \pi_1(X, p)$,

$$
\Phi_{g \cdot h}[\gamma] = [g \cdot h] \cdot [\gamma] \cdot [g \cdot h] \\
= [h \cdot g] \cdot [\gamma] \cdot [g \cdot h] \\
= [h] \cdot [g] \cdot [\gamma] \cdot [g] \cdot [h] \\
= [h] \cdot \Phi_g[\gamma] \cdot [h] \\
= \Phi_h(\Phi_g[\gamma]) = (\Phi_h \circ \Phi_g)[\gamma],
$$

so $\Phi_{g \cdot h} = \Phi_h \circ \Phi_g$.

(b) Recalling that $\psi_*[\gamma] = [\psi \circ \gamma]$, for any $[\gamma] \in \pi_1(X, p)$ we have

$$
(\Phi_{\psi \circ g} \circ \psi_*)[\gamma] = \Phi_{\psi \circ g}[\psi \circ \gamma] \\
= [\psi \circ g] \cdot [\psi \circ \gamma] \cdot [\psi \circ g] \\
= [\psi \circ g] \cdot [\psi \circ \gamma] \cdot [\psi \circ g] \\
= \psi_*[g] \cdot \psi_*[\gamma] \cdot \psi_*[g],
$$

which, since ψ_* is a group homomorphism, gives us

$$
\psi_*[g \cdot \gamma \cdot g] = \psi_*([g] \cdot [\gamma] \cdot [g]) = \psi_*(\Phi_g[\gamma]) = (\psi_* \circ \Phi_g)[\gamma],
$$

so $\Phi_{\psi \circ g} \circ \psi_* = \psi_* \circ \Phi_g$.

\blacksquare
Exercise 3 Let X be a path-connected topological space and let $p, q \in X$. Show that all paths from p to q give the same isomorphism of $\pi_1(X, p)$ with $\pi_1(X, q)$ if and only if $\pi_1(X, p)$ is abelian.

Proof.

(\Rightarrow) Suppose all paths from p to q give the same isomorphism of $\pi_1(X, p)$ with $\pi_1(X, q)$. Then for path f from p to q and $[\gamma], [\delta] \in \pi_1(X, p)$,

$\Phi_{\gamma f}([\gamma] \cdot [\delta]) = [\gamma \cdot f] \cdot [\gamma] \cdot [\delta] \cdot [\gamma \cdot f]$

$= [f] \cdot [\gamma] \cdot [\gamma] \cdot [\delta] \cdot [\gamma] \cdot [f]$

$= [f] \cdot [\gamma] \cdot [\gamma] \cdot [\delta] \cdot [\gamma] \cdot [f]$

$= [f] \cdot [\delta] \cdot [\gamma] \cdot [f]$

$= \Phi_f([\delta] \cdot [\gamma]).$

But, since $\Phi_{\gamma f} = \Phi_f$ by assumption, and since both are bijections, we have that $[\gamma] \cdot [\delta] = [\delta] \cdot [\gamma]$, making $\pi_1(X, p)$ abelian.

(\Leftarrow) Suppose $\pi_1(X, p)$ is abelian. Then for paths f, g from p to q and $[\gamma] \in \pi_1(X, p)$, we have $[\gamma] = [\gamma] \cdot [g] \cdot [f] \cdot [g]$. Since $\pi_1(X, p)$ is abelian, and $[f] \cdot [g] \cdot [\gamma]$ and $[g] \cdot [f]$ are all in $\pi_1(X, p)$, we have $[\gamma] = [f] \cdot [g] \cdot [\gamma] \cdot [g] \cdot [f]$. But this implies that $[f] \cdot [\gamma] \cdot [f] = [g] \cdot [\gamma] \cdot [g]$ or, equivalently, $\Phi_f = \Phi_g$. Because $f, g,$ and $[\gamma]$ were all arbitrary, it follows that all paths from p to q give the same isomorphism of $\pi_1(X, p)$ with $\pi_1(X, q)$.

Exercise 6 For any path-connected space X and any base point $p \in X$, show that the map sending a loop to its circle representative induces a bijection between the set of conjugacy classes of elements of $\pi_1(X, p)$ and $[S^1, X]$ (the set of free homotopy classes of continuous maps from S^1 to X).

Proof. ■
Exercise 9 Suppose X and Y are connected topological spaces and the fundamental group of Y is abelian. Show that if $F, G : X \to Y$ are homotopic maps such that $F(x_0) = G(x_0)$ for some $x_0 \in X$, then $F_* = G_* : \pi_1(X, x_0) \to \pi_1(Y, F(x_0))$. Give a counterexample to show that this might not be true if $\pi_1(Y)$ is not abelian.

Proof. Call $F(x_0) = y_0$ and assume that there is a homotopy $H : X \times I \to Y$ from F to G such that $H(x_0, t) = y_0$ for all $t \in I$. Then for a loop γ whose base point is x_0, we have that $H(\gamma(s), 0) = (F \circ \gamma)(s)$, $H(\gamma(s), 1) = (G \circ \gamma)(s)$, and $H(\gamma(0), t) = H(\gamma(1), t) = y_0$ for all $t \in I$, so we know $F_*[\gamma] = [F \circ \gamma] = [G \circ \gamma] = G_*[\gamma]$, making $F_* = G_*$. I assume that the fact $\pi_1(Y, y_0)$ is abelian was swept up somewhere in our initial assumption about H. I have no counterexample to reinforce the necessity of this assumption.

Exercise 11 Show that the Möbius band is homotopy equivalent to \mathbb{S}^1.

Proof. We will show that \mathbb{S}^1 is a deformation retract of the Möbius band. First, consider $I \times I$ and the subspace $S = \{(x, \frac{1}{2}) \mid x \in I\}$. Surely the function $r : I \times I \to S$ defined by $r(x, y) = (x, \frac{1}{2})$ is a retraction of $I \times I$ onto S. Further, $\iota_S \circ r$ is homotopic to $\text{Id}_{I \times I}$, where ι_S is the inclusion of S into $I \times I$, since $I \times I$ is a convex subset of \mathbb{R}^2. Hence, r is a deformation retraction, and S is a deformation retract of $I \times I$ (see figure). Now, if we consider the identification space $I \times I/\sim$, where (x, y) is identified with itself when $x \in (0, 1)$ and $(0, y) \sim (1, 1 - y)$ for all $y \in I$, then we have the Möbius band. Additionally, if we apply this quotient map to S, the only identification made is $(0, \frac{1}{2}) \sim (1, \frac{1}{2})$, and since S is homeomorphic to I, we get \mathbb{S}^1. Since quotient maps preserve deformation retracts, we have that \mathbb{S}^1 is a deformation retract of the Möbius band. Hence, by Proposition 7.46, the two spaces are homotopy equivalent.
Exercise 15 Let X be the union of the three circles with radius 1 and centers at $(0,0)$, $(2,0)$, and $(4,0)$. Prove that X is homotopy equivalent to a bouquet of three circles.

Proof. We will show that both spaces are deformation retracts of \mathbb{R}^2 minus three distinct points, thus concluding by Proposition 7.46 that the spaces are homotopy equivalent. Considering X as a subspace of \mathbb{R}^2, start by removing the centers of the circles. Then, as described for the figure-eight space, we define the deformation retraction by “...carving the space up into regions in which straight-line homotopies are easily defined...” namely, the insides of the circles (minus their centers) and the space on the “outside” of X. “The resulting maps are continuous by the gluing lemma.” Hence, X is a deformation retract of \mathbb{R}^2 minus three points. Similarly, for the bouquet of three circles, remove the centers of the circles and construct a similar deformation retraction onto the bouquet (see figure).