8 Graphs and Functions

Concepts:
- Graphs of Specific Functions
- The Domain and Range of a Function
- Piecewise Functions
- The Vertical Line Test

(Section 2.3)

8.1 The Graph of a Function

Definition 8.1
The graph of the function f is the set of all points $(x, f(x))$ where x is in the domain of f.

We can plot these points on an xy-Cartesian Coordinate System. You can see that the output values of the function (i.e., the $f(x)$ values) are the y-coordinates of the points.

You are responsible for graphs of basic functions.
You will need to know how to graph some basic functions without the help of your calculator.

- Linear Functions ($f(x) = mx + b$)
- Power Functions ($f(x) = x^n$) where n is a positive integer.
- Square Root Function ($f(x) = \sqrt{x}$)
- Greatest Integer Function ($f(x) = \lfloor x \rfloor$)
- Absolute Value Function ($f(x) = |x|$)
- Piecewise-defined Functions.
Example 8.2
Sketch the graph of $g(x) = |x + 2|$.
Example 8.3 (Domain and Range from a Graph)
Find the domain and range of each of the functions graphed below.
Example 8.4 (Graphing Piecewise-defined Functions)

Sketch the graph of

\[k(x) = \begin{cases}
3x + 1 & \text{if } x \leq 2 \\
x^2 & \text{if } x > 2
\end{cases} \]
Example 8.5 (Can you interpret the graph of a function?)
In the picture below, the graph of \(y = f(x) \) is the solid graph, and the graph of \(y = g(x) \) is the dashed graph. Find the true statement.

Possibilities:
(a) \(f(1) < g(1) \)
(b) \(g(2) = 2 \)
(c) \(f(-3) < g(-3) \)
(d) \(f(-1) > g(-1) \)
(e) \(f(-1) = 2 \)

8.1.1 The Vertical Line Test

The **Vertical Line Test** is used to determine if \(y \) is a function of \(x \). If you have a graph on the Cartesian Coordinate System and at least one vertical line touches the graph in more than one place, then \(y \) is NOT a function of \(x \) for that graph. If the no vertical line touches the graph in more than one place, then \(y \) is a function of \(x \) for that graph.

Why does this work? The equation of a vertical line is of the form \(x = a \). If the vertical line \(x = a \) touches the graph in more than one place, then there is more than one output value (\(y \) value) that corresponds to the input value \(a \). Since there can only be one output value for every input value of a function, then \(y \) cannot be a function of \(x \).
Example 8.6 (Do you understand the vertical line test?)
Is y a function of x in the graph below?

Example 8.7 (Do you understand the vertical line test?)
Is x a function of y in the graph below?

What test determines if x is a function of y?
8.2 Graphs of Commonly Used Functions

You should study these graphs and be able to reproduce them without using a graphing calculator.

Example 8.8 (The Power functions)
Note the lack of scale on these two graphs.

\[f(x) = x^n \text{ for } n \text{ even} \]

\[f(x) = x^n \text{ for } n \text{ odd} \]

Example 8.9 (The Square Root and Absolute Value Functions)

\[f(x) = \sqrt{x} \]

\[f(x) = |x| \]
Example 8.10 (The Greatest Integer Functions \(f(x) = \lfloor x \rfloor \))
Sketch the graph of the greatest integer function. This is an example of a step function.