Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 10 multiple choice questions. Record your answers on this page by filling in the circle corresponding to the correct answer.

Multiple Choice Questions

1 A B C D E
2 A B C D E
3 A B C D E
4 A B C D E
5 A B C D E
6 A B C D E
7 A B C D E
8 A B C D E
9 A B C D E
10 A B C D E

SCORE

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>
This page should be blank
Multiple Choice Questions

1. Consider the following function: \(g(x) = x^2 - 9 \). Find \(g(9 - t) \).

 A. \(g(9 - t) = t^2 + 18t + 72 \)
 B. \(g(9 - t) = t^2 - 18t + 72 \)
 C. \(g(9 - t) = t^2 + 18t \)
 D. \(g(9 - t) = t^2 - 18t - 72 \).
 E. \(g(9 - t) = t^2 - 18t \)

2. Find the values of \(x \) for which \(f(x) = g(x) \) where

 \[
 f(x) = 2x^2 - x + 1 \quad \text{and} \quad g(x) = x^2 - 4x + 4.
 \]

 A. \(x = \frac{-3 \pm \sqrt{21}}{2} \).
 B. \(x = -3 \pm \sqrt{21} \).
 C. \(x = \frac{-3}{2} \pm \sqrt{21} \).
 D. \(x = -3 \pm \frac{\sqrt{21}}{2} \).
 E. \(x = \frac{3}{2} \pm \sqrt{21} \).
3. Find all real solutions of the equation

\[2x^2 + 5x - 4 = 0. \]

A. \(\frac{5 \pm \sqrt{57}}{4} \)

B. \(\frac{-5 \pm \sqrt{57}}{4} \)

C. \(\frac{-5 \pm \sqrt{7}}{4} \)

D. \(\frac{-5 \pm \sqrt{57}}{2} \)

E. no real solutions

4. Evaluate the expression \(|| -7| - | -4|| \)

A. \(-11\)

B. \(-3\)

C. \(0\)

D. \(3\)

E. \(11\)
5. Find the length x in the figure, if the shaded area is 96 in2.

A. 8.00 in
B. 9.00 in
C. 9.80 in
D. 11.31 in
E. 48.00 in

6. Solve the equation $7x - 3 = 8x + 8$ for x.

A. -11
B. -5
C. 5
D. 6
E. 11
7. For the points \((1,5)\) and \((4,1)\), find the distance between them and find the midpoint of the line segment that joins them.

A. The distance is 5; the midpoint is \(\left(\frac{5}{2}, 3\right)\).

B. The distance is 25; the midpoint is \(\left(\frac{5}{2}, 3\right)\).

C. The distance is 5; the midpoint is \((5,3)\).

D. The distance is 25; the midpoint is \((5,3)\).

E. The distance is 5; the midpoint is \(\left(3, -\frac{5}{2}\right)\).

8. Do the graphs of \(y = -3x^2 + 6x - \frac{1}{2}\) and \(y = \sqrt{7 - \frac{7}{9}x^2}\) intersect in the viewing rectangle \([-4, 4]\) by \([-1, 3]\)? Determine the number of points of intersection.

A. 0

B. 1

C. 2

D. 3

E. 5
9. Which of the following is a correct equation for the line passing through the point (3, 19) and the point (10, 1).
 A. $7y + 18x + 187 = 0$
 B. $7y + 18x - 187 = 0$
 C. $7y - 18x - 187 = 0$
 D. $7y - 18x + 187 = 0$
 E. none of these

10. Express the following rule in function notation:
 “square, add 5, then take the square root”
 A. $f(x) = \sqrt{x^2 + 5}$
 B. $f(x) = \sqrt{x + 5}$
 C. $f(x) = (\sqrt{x} + 5)^2$
 D. $f(x) = \sqrt{(x + 5)^2}$
 E. $f(x) = (\sqrt{x} + \sqrt{5})^2$
11. If \(f(x) = 6x^2 - x \), find the difference quotient, \(\frac{f(x + h) - f(x)}{h} \) if \(h \neq 0 \) and simplify.

12. Let

\[
g(x) = \begin{cases}
 x + 1 & \text{if } x \leq 2 \\
 |x - 12| & \text{if } 2 < x \leq 5 \\
 x^2 - 1 & \text{if } 5 \leq x < 7 \\
 \frac{1}{x} & \text{if } x \geq 7
\end{cases}
\]

Find

A. \(g(1) \)

B. \(g(3) \)

C. \(g(5) \)

D. \(g(7) \)

E. \(g(9) \)
13. Find the distance between $-2/7$ and 2. (Exact distance, no approximation)

14. Due to the curvature of the earth, the maximum distance D that you can see from the top of a tall building of height h is estimated by the formula

$$D = \sqrt{2rh + h^2},$$

where $r = 3960$ mi is the radius of the earth and D and h are also measured in miles. How far can you see from the observation deck of the tower, 820 ft above the ground? [**NOTE:** h is in miles and there are 5280 feet in one mile.]
15. Solve the equation

\[
\frac{6}{x-5} + \frac{2}{x+5} = \frac{84}{x^2 - 25}.
\]

16. Find a number \(b \) such that the given equation has exactly one real solution.

\[x^2 + bx + 4 = 0\]
17. Determine the average rate of change of the function \(f(x) = x^3 - 8x^2 \) between \(x = 0 \) and \(x = 3 \).

18. Find the domain and range of the function. Express your answers in interval notation.

Domain:

Range:

19. Find an equation of the line through \(A = (-2,2) \) which is perpendicular to the line through \(P = (6,3) \) and \(Q = (-6,3) \).

20. The projected number of scheduled passengers on U. S. commercial airlines (in billions) is given in the following table.

<table>
<thead>
<tr>
<th>Year</th>
<th>1998</th>
<th>2002</th>
<th>2006</th>
<th>2010</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passengers</td>
<td>0.552</td>
<td>0.552</td>
<td>0.657</td>
<td>0.630</td>
<td>0.663</td>
</tr>
</tbody>
</table>

(I) Find the equation of the line through the first data point and the last data point.

(II) Compute the residuals for this line.

(III) Compute the sum of the squares of the residuals for this line.

 The least squares line of best fit is \(y = 0.0071x - 13.644 \) where \(x \) is the calendar year.

(IV) Compute the residuals for the least squares line of best fit.

(V) Compute the sum of the squares of the residuals for the least squares line of best fit.

\text{END OF TEST}