27.) A subgroup \(H \) is **conjugate to a subgroup** \(K \) of a group \(G \) if there exists an inner automorphism \(i_g \) of \(G \) such that \(i_g[H] = K \). Show that conjugacy is an equivalence relation on the collection of subgroups of \(G \).

So again, this problem is saying to show that the relation on subgroups defined by \(H \sim K \) if and only if there exists \(g \in G \) such that \(i_g[H] = gHg^{-1} = K \) is an equivalence relation. So we need to show the three properties of an equivalence relation.

- **reflexive:** Here we want to show that \(H \sim H \). Consider the identity \(e \in G \). Then \(i_e[H] = eHe^{-1} = H \). Therefore the relation is indeed reflexive.

- **symmetric:** Here we want to show that if \(H \sim K \) then we also have \(K \sim H \). By assumption, there exists \(g \in G \) such that \(i_g[H] = gHg^{-1} = K \). Therefore we have that
 \[
 H = eHe^{-1} = (g^{-1}g)H(g^{-1}g) = g^{-1}(gHg^{-1})g = g^{-1}Kg
 \]
 and so \(i_{g^{-1}}[K] = H \) giving us that \(K \sim H \) and so the relation is indeed symmetric.

- **transitive:** Assume that \(H \sim K \) and \(K \sim L \) then we wish to show that \(H \sim L \). By assumption, there exists \(g_1, g_2 \in G \) such that \(i_{g_1}[H] = g_1Hg_1^{-1} = K \) and \(i_{g_2}[K] = g_2Kg_2^{-1} = L \). Therefore by substitution we have that
 \[
 L = g_2Kg_2^{-1} = g_2(g_1Hg_1^{-1})g_2^{-1} = (g_2g_1)H(g_2g_1)^{-1} = i_{g_1g_2}[H]
 \]
 and so indeed \(H \sim L \).

35.) Show that if \(H \) and \(N \) are subgroups of a group \(G \), and \(N \) is normal in \(G \), then \(H \cap N \) is normal in \(H \). Show by an example that \(H \cap N \) need not be normal in \(G \).

You showed for homework last semester that the intersection of two subgroups is itself a subgroup. But let’s go over that again for practice. To show that \(H \cap N \) is a subgroup, it is sufficient to show closure and that \(a^{-1} \) is an element of \(H \cap N \) for all \(a \) in \(H \cap N \).

- **closure:** Let \(a, b \in H \cap N \). Then since both \(H \) and \(N \) are themselves subgroups we have that \(ab \in H \) and \(\in N \) and therefore \(ab \in H \cap N \).

- **inverses:** Let \(a \in H \cap N \). Again, since both \(H \) and \(N \) are themselves subgroups, we must have that \(a^{-1} \in H \) and \(a^{-1} \in N \) and so \(a^{-1} \in H \cap N \).

Now we need only show that \(H \cap N \) is normal in \(H \). To do this, we will show that for all \(h \in H \) and \(g \in H \cap N \) we must have \(hgh^{-1} \in H \cap N \). First note that since \(g \in H \cap N \) we have that in particular \(g \in H \) and so since \(H \) is a subgroup we must have that \(hgh^{-1} \in H \). Furthermore, since \(N \) is normal in \(G \) we have that \(hgh^{-1} \in N \). Therefore \(hgh^{-1} \in H \cap N \) giving us that the intersection is normal in \(H \).
37.) Let $\text{Aut}(G)$ denote the set of automorphisms of a group G.

a Show that $\text{Aut}(G)$ is a group under function composition.

Here we need to show that $\text{Aut}(G)$ satisfies the properties of a group.

- **closure:** Let $\phi, \psi \in \text{Aut}(G)$. Then we need to show that $\phi \circ \psi$ is also an automorphism. There are then three things to check.

 - **homomorphism:** We need to make sure that $\phi \circ \psi$ is a homomorphism. Let $g_1, g_2 \in G$. Then because both ϕ and ψ are themselves homomorphisms, we have
 \[\phi \circ \psi(g_1g_2) = \phi(\psi(g_1)\psi(g_2)) = \phi(\psi(g_1))\phi(\psi(g_2)) = \phi \circ \psi(g_1)\phi \circ \psi(g_2). \]
 And so the composition also satisfies the homomorphism property.

 - **one-to-one:** Here we need to show that $\phi \circ \psi$ is also one-to-one. Note that since ϕ and ψ are injective then we have $\ker \phi = \ker \psi = \{e\}$ where $e \in G$ is the identity. By definition
 \[\ker \phi \circ \psi = \{ g \in G \mid \phi \circ \psi(g) = \phi(\psi(g)) = e \}. \]
 So if $\phi(\psi(g)) = e$ then we must have that $\psi(g) = e$ since $\ker \phi = \{e\}$ and similarly we must then have that $g = e$ since $\ker \psi = \{e\}$. And so we indeed have that $\ker \phi \circ \psi = \{e\}$ giving us that the composition is an injection.

 - **onto:** Here we want to make sure that under the composition, for every $g_1 \in G$ there exists $g' \in G$ such that $\phi \circ \psi(g') = g_1$. Note that since ϕ is surjective, there exists $g_2 \in G$ such that $\phi(g_2) = g_1$. Furthermore, since ψ is also surjective, there exists g_3 such that $\psi(g_3) = g_2$. Therefore
 \[\phi \circ \psi(g_3) = \phi(\psi(g_3)) = \phi(g_2) = g_1 \]
 giving us that the composition is also surjective.

And so we have that $\phi \circ \psi \in \text{Aut}(G)$.

b Show that the inner automorphisms of a group G form a normal subgroup of $\text{Aut}(G)$ under function composition.

For ease of notation, let $\text{Inn}(G)$ denote the set of inner automorphisms of G,

$$ \text{Inn}(G) = \{ i_g \mid g \in G \}. $$

The name of these maps tells us that they are indeed automorphisms and therefore $\text{Inn}(G) \subset \text{Aut}(G)$. (We should have shown this is true in class but that’s okay.) We need to show two things for this problem. First we need to show that $\text{Inn}(G)$ is a subgroup of $\text{Aut}(G)$. Then we will show that it is a normal subgroup.
• **subgroup:** Again, to show that it is a subgroup, we need to show that $\text{Inn}(G)$ is closed under function composition and for all $i_g \in \text{Inn}(G)$ that $(i_g)^{-1} \in \text{Inn}(G)$.

 - **closure:** By the proof in part (a) we know that for all $g_1, g_2 \in G$ that $i_{g_1} \circ i_{g_2}$ is again an automorphism and so we just need to show that it is an inner automorphism. Note that for all $h \in G$

 $i_{g_1} \circ i_{g_2}(h) = i_{g_1}(i_{g_2}(h)) = i_{g_1}(g_2hg_2^{-1}) = g_1(g_2hg_2^{-1})g_1^{-1} = (g_1g_2)h(g_1g_2)^{-1} = i_{g_1g_2}(h)$

 giving us that $\text{Inn}(G)$ is closed under composition.

 - **inverses:** Now let $g \in G$ and consider $g^{-1} \in G$. Then for all $h \in G$

 $i_g \circ i_{g^{-1}}(h) = i_g(i_{g^{-1}}(h)) = i_g(g^{-1}hg) = g(g^{-1}hg)g^{-1} = h = i_e(h)$

 Where i_e is just the identity map which is the identity element in $\text{Aut}(G)$. A similar argument can be made to show $i_{g^{-1}} \circ i_g = i_e$ and so every inner automorphism as an inverse inner automorphism. Therefore $\text{Inn}(G)$ is indeed a subgroup of $\text{Aut}(G)$.

• **normality:** So the easiest way to show that $\text{Inn}(G)$ is normal in $\text{Aut}(G)$ is to show that $\phi \circ i_g \circ \phi^{-1} \in \text{Inn}(G)$ for all $\phi \in \text{Aut}(G)$, $i_g \in \text{Inn}(G)$. Let $\phi \in \text{Aut}(G)$ and $i_g \in \text{Inn}(G)$ and $h \in G$. Using the homomorphism property of ϕ

 $\phi \circ i_g \circ \phi^{-1}(h) = \phi(i_g(\phi^{-1}(h))) = \phi(g\phi^{-1}(h)g^{-1})$

 $= \phi(g)\phi(\phi^{-1}(h))\phi(g^{-1}) = \phi(g)h[\phi(g)]^{-1}$

 $= i_{\phi(g)}(h)$

 which is an inner automorphism of G since $\phi(g) \in G$.
