1 Problem of the week(s), 30 October-13 November 2000

The following is from the 37th Putnam exam. Students will have an opportunity to present their solution at the next problem session, Monday, 13 November 2000.

1. Let R be the set of points inside and on a convex polygon in the (x,y)-plane. Let $\delta(x,y)$ denote the distance from a point (x,y) in the plane to the point in R which is closest to (x,y). Show that there are constants a, b and c, which are independent of R so that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\delta(x,y)} \, dx \, dy = a + bL + cA$$

where L is the perimeter of R and A is the area of A. Find the values of a, b and c.

Hints: 1. Consider simple special cases such as when R is a point or a line segment. 2. What do the sets $\delta(x,y) = \text{constant}$ look like?