Concepts:

- Angles
 - Initial Side and Terminal Side
 - Standard Position
 - Coterminal Angles

- Measuring Angles
 - Radian Measure vs. Degree Measure
 - Radian Measure as a Distance on the Unit Circle
 - Converting between Radian Measure and Degree Measure
 - Finding the Quadrant Associated with the Terminal Side of an Angle

- Identifying the Point on the Unit Circle that Corresponds to an Angle in Standard Position

- The Trigonometric Functions
 - The Definitions of sin, cos, tan, csc, sec, and cot Based on the Unit Circle
 - Evaluating the Six Trigonometric Functions at Special Angles
 - The Sign of a Trigonometric Function

- The $\frac{\pi}{4} - \frac{\pi}{4} - \frac{\pi}{2}$ or the $45^\circ - 45^\circ - 90^\circ$ Triangle

- The $\frac{\pi}{6} - \frac{\pi}{3} - \frac{\pi}{2}$ or the $30^\circ - 60^\circ - 90^\circ$ Triangle

- Approximating Values of Trigonometric Functions with Your Calculator
 - Parentheses Are Important
 - Radian Mode vs. Degree Mode

- Understanding Trigonometric Notation

- Trigonometric Identities
 - Pythagorean Identities
 - Periodicity Identities
 - Negative Angle Identities
1. Find the radian measure of each of the following:

 (a) 450° angle
 (b) −50° angle

2. (a) Suppose than an angle of measure t radians intersects the unit circle at the point $\left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{3}}{2}\right)$. What is one possibility for t? How do you find all the other possibilities?

 (b) Suppose than an angle of measure t radians intersects the unit circle at the point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. What is one possibility for t? How do you find all the other possibilities?

3. Suppose that an angle of measure θ radians is placed in standard position. Find the location of the terminal side of the angle. **Possibilities:** (A) Quadrant I, (B) Quadrant II, (C) Quadrant III, (D) Quadrant VI, (E) the positive x-axis, (F) the negative x-axis, (G) the positive y-axis, or (H) the negative y-axis.

 (a) $\theta = \frac{74\pi}{3}$
 (b) $\theta = -\frac{74\pi}{3}$
 (c) $\theta = 100\pi$
 (d) $\theta = -100\pi$
 (e) $\theta = 21\pi$
 (f) $\theta = -21\pi$
 (g) $\theta = \frac{102\pi}{7}$
 (h) $\theta = -\frac{102\pi}{7}$
4. Evaluate the six trigonometric functions at each of the following angles.
 (a) \(t = \frac{\pi}{3} \)
 (b) \(t = -\frac{9\pi}{4} \)
 (c) \(t = 4\pi \)
 (d) \(t = \frac{17\pi}{6} \)

5. (a) The terminal side of an angle, \(x \), in standard position contains the point \((-5, 9)\). Evaluate the six trigonometric functions at \(x \).
 (b) The terminal side of an angle, \(x \), in standard position contains the point \((11, 4)\). Evaluate the six trigonometric functions at \(x \).

6. Suppose \(t \) is in the fourth quadrant and \(\cos(t) = \frac{1}{5} \). Evaluate the remaining five trigonometric functions on \(t \).

7. Suppose \(t \) is in the first quadrant and \(\sin(t) = \frac{6}{7} \). Find each of the following (give exact answers):
 (a) \(\sin(8\pi + t) \)
 (b) \(\tan(-t) \)
 (c) \(\cos(4\pi - t) \)

8. Use algebra and identities to simplify the expression. Assume all denominators are nonzero.
 (a) \(\frac{\sin(t)}{\tan(t)} \)
 (b) \(\frac{1}{\cos(t)} - \sin(t)\tan(t) \)

9. Solve each of the following equations.
 (a) \(\cos(x) = 0 \)
 (b) \(\sin^3 t - \sin t = 0 \)
 (c) \(\cos^2 t - 2\cos t = -1 \)