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 The Bernoullis and the Harmonic Series

 William Dunham

 After receiving a B.S. in mathematics from the University of
 Pittsburgh in 1969, William Dunham moved westward to
 complete a 1974 Ph.D. at the Ohio State University, where
 he did his thesis in general topology under Professor
 Norman Levine. Since graduate school, Dr. Dunham has
 taught mathematics at Hanover College, an institution where
 faculty must be generalists and where the liberal arts are
 taken seriously. In that environment, his interests shifted
 toward the history of mathematics. Professor Dunham re?
 ceived a grant, in 1983, from the Lilly Endowment, Inc., to
 pursue these historical interests, and it was while engaged
 in such pursuits that he stumbled upon the 300-year old
 mathematical morsel described in this paper.

 Any introduction to the topic of infinite series soon must address that first great
 counterexample of a divergent series whose general term goes to zero?the harmonic
 series E~=1l/A:. Modern texts employ a standard argument, traceable back to the
 great 14th Century Frenchman Nicole Oresme (see [3], p. 92), which establishes
 divergence by grouping the partial sums:
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 and in general
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 from which it follows that the partial sums grow arbitrarily large as n goes to
 infinity.

 It is possible that seasoned mathematicians tend to forget how surprising this
 phenomenon appears to the uninitiated student?that, by adding ever more negligi?
 ble terms, we nonetheless reach a sum greater than any preassigned quantity.
 Historian of mathematics Morris Kline ([5], p. 443) reminds us that this feature of
 the harmonic series seemed troubling, if not pathological, when first discovered.
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 So unusual a series could not help but attract the interest of the preeminent
 mathematical family of the 17th Century, the Bernoullis. Indeed, in his 1689 treatise
 "Tractatus de Seriebus Infinitis," Jakob Bernoulli provided an entirely different, yet
 equally ingenious proof of the divergence of the harmonic series. In "Tractatus,"
 which is now most readily found as an appendix to his posthumous 1713 masterpiece
 Ars Conjectandi, Jakob generously attributed the proof to his brother ("Id primus
 deprehendit Frater"), the reference being to his full-time sibling and part-time rival
 Johann. While this "Bernoullian" argument is sketched in such mathematics history
 texts as Kline ([5], p. 444) and Struik ([6], p. 321), it is little enough known to
 warrant a quick reexamination.

 JACOBI BERNOULLI,
 ProfefC Bafil. & utriufque Societ. Reg. Scientitr.

 Gall. & Prufn SodaL
 Mathematici Clleberjumi,

 ARS CONJECTANDI,
 OPUS POSTHUMUM.

 Accedit

 TRACTATUS

 DE SERIEBUS INFINITIS,

 EtEpiSTOLA Gallice fcripta

 DE LUDO PILJE
 RETICUJ_ARIS.

 BASILE?,

 Impcnfis THURNISIORU'M, Fratrunv
 c]d Idcc _JII.

 ?a

 1-1

 O

 The proof rested, quite unexpectedly, upon the convergent series
 1 1111 ~

 - + - + ? + ? +... = y
 2 6 12 20  ̂k%k{k + l)'

 The modern reader can easily establish, via mathematical induction, that
 "1 n

 ft_i *(* + !) " + !'
 and then let n go to infinity to conclude that

 " 1

 k.iHk + l)
 = 1.
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 Jakob Bernoulli, however, approached the problem quite differently. In Section
 XV of Tractatus, he considered the infinite series

 then introduced

 a a a a

 #=- + ? + ?+ ? +
 c 2c 3c 4c

 a a a a a

 P=N--= + + + +
 c 2c 3c 4c 5c

 and subtracted termwise to get

 a I a a \ I a a \ i a a \
 ~c~ = N~P=\c~Tc ) + \2c ~3c~ ) + \Jc~ ~ 4c J +

 a a a a

 2c 6c 12c 20c

 (i)

 Thus, for a = c, he concluded that
 1111 1
 - + - + ? + ? +???=- = 1. (2) 2 6 12 20 1 W

 Unfortunately, Bernoulli's "proof" required the subtraction of two divergent
 series, N and P. To his credit, Bernoulli recognized the inherent dangers in his
 argument, and he advised that this procedure must not be used without caution
 ("non sine cautela"). To illustrate his point, he applied the previous reasoning to the
 series

 2a 3a 4a
 S= ?+ ? + ? + ...

 c 2c 3c

 and

 2a 3a 4a 5a
 T=S-= ? + ? + ? + ....

 c 2c 3c 4c

 Upon subtracting termwise, he got

 2a a a a a
 ? = S-T= ? + ? +-+-+ ? ? ?, (3) c 2c 6c 12c 20c w

 which provided a clear contradiction to (1).
 Bernoulli analyzed and resolved this contradiction as follows: the derivation of

 (1) was valid since the "last" term of series N is zero (that is, lim k_^O0a/(kc) = 0),
 whereas the parallel derivation of (3) was invalid since the "last" term of series S is
 non-zero (because limk^O0(k + l)a/(kc) = a/c? 0). In modern terms, he had
 correctly recognized that, regardless of the convergence or divergence of the series
 Yfk = lxk, the new series Hf==i(xk ? xk+l) converges to xx provided \\mk^O0xk = 0.
 Thus, he not only explained the need for "caution" in his earlier discussion but also
 exhibited a fairly penetrating insight, by the standards of his day, into the general
 convergence/divergence issue.
 Having thus established (2) to his satisfaction, Jakob addressed the harmonic

 series itself. Using his brother's analysis of the harmonic series, he proclaimed in
 Section XVI of Tractatus:
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 XVI. Summx fer'tei infiuiu harmonice frogrejponalium, i+f+j+^+f &c* *ft infmtta.

 He began the argument that " the sum of the infinite harmonic series
 11111
 -+-+-+-+- etc.
 12 3 4 5

 is infinite" by introducing
 111111

 A=2+-3 + 4 + J+6+J+-->
 which " transformed into fractions whose numerators are 1, 2, 3, 4 etc" becomes

 12 3 4 5 6

 2 + 6 + 12 + 20 + 30 + 42 + '"'

 Using (2), Jakob next evaluated:
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 C=2+6+l2 + *) + "-=1
 111 111

 D- - + ? + ? +??? =C -- = !-- =
 6 12 20 2 2 2

 11 1111
 ? + ? +??? =D -- =-=-
 12 20 6 2 6 3

 1 1111

 ? + ??? =?~Y2~3~12 = 4
 1 1111

 F= ?+??? =E- ? = -- ? =

 By adding this array columnwise, and again implicitly assuming that termwise
 addition of infinite series is permissible, he arrived at

 12 3 4

 = 2 + 6+ 12 + 20 + '"
 = __.

 On the other hand, upon separately summing the terms forming the extreme left
 and the extreme right of the arrayed equations above, he got

 1 1 1
 C + D + E + F+ ??? =1 + - + - + -+ ". =l+_4.

 2 3 4

 Hence, A = 1 + A. In Jakob's words, "The whole" equals "the part"?that is, the
 harmonic series 1+^4 equals its part A?which is impossible for a finite quantity.
 From this, he concluded that 1 + A is infinite.
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 Jakob Bernoulli was certainly convinced of the importance of his brother's
 deduction and emphasized its salient point when he wrote:

 The sum of an infinite series whose final term vanishes perhaps is finite,
 perhaps infinite.

 Obviously, this proof features a naive treatment both of series manipulation and
 of the nature of "infinity." In addition, it attacks infinite series "holistically" as
 single entities, without recourse to the modern idea of partial sums. Before getting
 overly critical of its distinctly 17th-century flavor, however, we must acknowledge
 that Bernoulli devised this proof a century and a half before the appearance of a
 truly rigorous theory of series. Further, we can not deny the simplicity and
 cleverness of his reasoning nor the fact that, if bolstered by the necessary supports
 of modern analysis, it can serve as a suitable alternative to the standard proof.

 Indeed, this argument provides us with an example of the history of mathematics
 at its best?paying homage to the past yet adding a note of freshness and ingenuity
 to the modern classroom. Perhaps, in contemplating this work, some of today's
 students might even come to share a bit of the enthusiasm and wonder that moved
 Jakob Bernoulli to close his Tractatus with the verse [7]

 So the soul of immensity dwells in minutia.
 And in narrowest limits no limits inhere.

 What joy to discern the minute in infinity!
 The vast to perceive in the small, what divinity!
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 Remark. Jakob Bernoulli, eager to examine other infinite series, soon turned his
 attention in section XVII of Tractatus to

 111 ?? 1

 1+4 + 9 + ? + --?** <4)
 the evaluation of which "is more difficult than one would expect" ("difficilior est
 quam quis expectaverit"), an observation that turned out to be quite an understate?
 ment. He correctly established the convergence of (4) by comparing it termwise with
 the greater, yet convergent series

 111
 1+-+-+ ? + ???

 3 6 10

 /l 1 1 1 \ , ,
 \2 6 12 20 / w

 But evaluating the sum in (4) was too much for Jakob, who noted rather plaintively

 If anyone finds and communicates to us that which up to now has eluded
 our efforts, great will be our gratitude.

 The evaluation of (4), of course, resisted the attempts of another generation of
 mathematicians until 1734, when the incomparable Leonhard Euler devised an
 enormously clever argument to show that it summed to tt2/6. This result, which
 Jakob Bernoulli unfortunately did not live to see, surely ranks among the most
 unexpected and peculiar in all of mathematics. For the original proof, see ([4], pp.
 83-85). A modern outline of Euler's reasoning can be found in ([2], pp. 486-487).

 REFERENCES
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 7. Translated from the Latin by Helen M. Walker, as noted in David E. Smith's A Source Book in

 Mathematics, Dover, New York, 1959, p. 271.

 An idea reaches its full usefulness only when one understands it so well that one believes that one

 has always possessed it and becomes incapable of seeing it as anything but a trivial and
 immediate remark.

 Henri Lebesgue
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