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13. Divisor Theory of Metric Graphs

We now turn from discrete graphs to metric graphs.

Definition 13.1. A metric graph is a compact, connected metric space Γ obtained
by identifying the edges of a graph G with line segments of fixed positive real length.
The graph G is called a model for Γ

Example 13.2. If we assign lengths to the edges of a cycle, we obtain a circle. Thus,
the circle is a metric graph.

Figure 1. A metric graph and one of its models

Remark 13.3. A metric graph Γ does not have a unique model. Two graphs are
models for the same metric graph if and only if they admit a common refinement.

Definition 13.4. The divisor group Div(Γ) of a metric graph Γ is the free abelian
group on points of the metric space Γ.

Many properties of divisors can be defined in a way that is completely analogous
to the discrete graph case.

Definition 13.5. A divisor D =
∑
aivi on a metric graph is effective if ai ≥ 0 for

all i. Its degree is defined to be

deg(D) :=
∑

ai.

As in the case of discrete graphs, we want to talk about equivalence of divisors.
For this, we need a notion of rational functions on metric graphs.

Definition 13.6. A rational function on a metric graph Γ is a continuous, piecewise
linear function ϕ : Γ → R with integer slopes. We write PL(Γ) for the group of
rational functions on Γ.

Example 13.7. Figure 2 indicates the domains of linearity and slopes of a rational
function ϕ on a circle. It therefore determines the rational function up to translation.
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Figure 2. The domains of linearity and slopes of ϕ

Note that, in order for the function to be continuous, the two regions on which the
function has slope 1 must be of equal length.

Definition 13.8. Given ϕ ∈ PL(Γ) and v ∈ Γ, we define the order of vanishing of
ϕ at v, ordv(ϕ), to be the sum of the incoming slopes of ϕ at v. Note that ordv(ϕ) is
nonzero for only finitely many points v ∈ Γ. We define the divisor associated to ϕ to
be

div(ϕ) =
∑
v∈Γ

ordv(ϕ) · v.

Divisors of the form div(ϕ) are called principal.

Example 13.9. The divisor associated to the rational function of Example 13.7 is
pictured in Figure 3. Note that div(ϕ) is equal to div(ϕ + c) for any real number
c. This is analogous to the fact that, on an algebraic curve, the divisor associated
to a rational function is invariant under scaling the function by a non-zero constant.
Indeed, we have the following.
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Figure 3. The principal divisor divϕ

Lemma 13.10. Let Γ be a metric graph and let ϕ,ψ ∈ PL(Γ). We have div(ϕ) =
div(ψ) if and only if there exists a constant c such that ϕ = ψ + c.

Proof. First, if ϕ = ψ + c, then ϕ and ψ have the same slope along every tangent
vector of Γ. It follows that ordv(ϕ) = ordv(ψ) for all v ∈ Γ, hence div(ϕ) = div(ψ).

Conversely, if div(ϕ) = div(ψ), then

div(ϕ− ψ) = div(ϕ)− div(ψ) = 0.

It therefore suffices to show that, if φ ∈ PL(Γ) satisfies div(φ) = 0, then φ is constant.
To see this, consider the set A ⊆ Γ where φ obtains its minimum. Since Γ is compact,
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Figure 4. A rational function that is constant outside a local neigh-
borhood, and its associated divisor

bottom

the set A is nonempty. For any point v in the boundary of A, we have ordv(φ) < 0.
Thus, if div(φ) = 0, the boundary of A must be empty. Since Γ is connected, this
implies that A = Γ, so φ is constant. �

Example 13.11. On any metric graph Γ, given a point v ∈ Γ, let ε ∈ R be sufficiently
small so that the open ball Bε(v) contains no points of valence greater than 2 other
than possibly v. Let χ be the rational function that takes the value ε on Γ r Bε(v),
the value 0 at v, and has slope 1 on the edges in Bε(v) emanating from v. Then χ
has order of vanishing − val(v) at v and 1 at each of the boundary points of Bε(v). In
this way, we can view addition of div(χ) as a continuous version of chip firing, where
we specify not only the vertex v that we fire from, but also the distance ε that we
fire the chips.

We note the following.

Lemma 13.12. The degree of a principal divisor is zero.

Proof. Let ϕ ∈ PL(Γ), and let G be a model for Γ such that ϕ is linear on every edge
of G. In other words, V (G) contains the support of div(ϕ). For every edge e of G, let
se denote the slope of ϕ along e. We see that the incoming slope of ϕ at one endpoint
of e is se, and the incoming slope of ϕ at the other endpoint is −se. It follows that

deg(div(ϕ)) =
∑

v∈V (G)

ordv(ϕ) =
∑

e∈E(G)

[se − se] = 0.

�

Now that we have a notion of principal divisors on metric graphs, we can use it to
define equivalence of divisors.

Definition 13.13. We say that two divisors D and D′ on a metric graph Γ are
equivalent if D−D′ is principal. We define the Picard group of Γ to be the group of
equivalence classes of divisors on Γ. That is,

Pic(Γ) = Div(Γ)/ div(PL(Γ)).

The Jacobian Jac(Γ) of Γ is the group of equivalence classes of divisors of degree
zero.

The rank of a divisor on a metric graph is defined in exactly the same way as on
a discrete graph. Since this definition is crucial to our interests, we record it here.
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Definition 13.14. Given D ∈ Div(Γ), the complete linear series of D is

|D| := {D′ ∼ D | D′ ≥ 0}.
The rank of D is the largest integer r such that |D−E| 6= ∅ for all effective divisors
E of degree r.

See the paper of Haase–Musiker–Yu for details on the structure of |D|.


