CHIP FIRING

13. Divisor Theory of Metric Graphs

We now turn from discrete graphs to metric graphs.

Definition 13.1. A metric graph is a compact, connected metric space Γ obtained by identifying the edges of a graph G with line segments of fixed positive real length. The graph G is called a model for Γ

Example 13.2. If we assign lengths to the edges of a cycle, we obtain a circle. Thus, the circle is a metric graph.

FIGURE 1. A metric graph and one of its models

Remark 13.3. A metric graph Γ does not have a unique model. Two graphs are models for the same metric graph if and only if they admit a common refinement.

Definition 13.4. The divisor group $\text{Div}(\Gamma)$ of a metric graph Γ is the free abelian group on points of the metric space Γ .

Many properties of divisors can be defined in a way that is completely analogous to the discrete graph case.

Definition 13.5. A divisor $D = \sum a_i v_i$ on a metric graph is effective if $a_i \ge 0$ for all *i*. Its degree is defined to be

$$\deg(D) := \sum a_i.$$

As in the case of discrete graphs, we want to talk about equivalence of divisors. For this, we need a notion of rational functions on metric graphs.

Definition 13.6. A rational function on a metric graph Γ is a continuous, piecewise linear function $\varphi : \Gamma \to \mathbb{R}$ with integer slopes. We write $PL(\Gamma)$ for the group of rational functions on Γ .

Example 13.7. Figure 2 indicates the domains of linearity and slopes of a rational function φ on a circle. It therefore determines the rational function up to translation.

CHIP FIRING

FIGURE 2. The domains of linearity and slopes of φ

Note that, in order for the function to be continuous, the two regions on which the function has slope 1 must be of equal length.

Definition 13.8. Given $\varphi \in PL(\Gamma)$ and $v \in \Gamma$, we define the order of vanishing of φ at v, $\operatorname{ord}_{v}(\varphi)$, to be the sum of the incoming slopes of φ at v. Note that $\operatorname{ord}_{v}(\varphi)$ is nonzero for only finitely many points $v \in \Gamma$. We define the divisor associated to φ to be

$$\operatorname{div}(\varphi) = \sum_{v \in \Gamma} \operatorname{ord}_v(\varphi) \cdot v.$$

Divisors of the form $\operatorname{div}(\varphi)$ are called principal.

Example 13.9. The divisor associated to the rational function of Example 13.7 is pictured in Figure 3. Note that $\operatorname{div}(\varphi)$ is equal to $\operatorname{div}(\varphi + c)$ for any real number c. This is analogous to the fact that, on an algebraic curve, the divisor associated to a rational function is invariant under scaling the function by a non-zero constant. Indeed, we have the following.

FIGURE 3. The principal divisor div φ

Lemma 13.10. Let Γ be a metric graph and let $\varphi, \psi \in PL(\Gamma)$. We have $div(\varphi) = div(\psi)$ if and only if there exists a constant c such that $\varphi = \psi + c$.

Proof. First, if $\varphi = \psi + c$, then φ and ψ have the same slope along every tangent vector of Γ . It follows that $\operatorname{ord}_v(\varphi) = \operatorname{ord}_v(\psi)$ for all $v \in \Gamma$, hence $\operatorname{div}(\varphi) = \operatorname{div}(\psi)$.

Conversely, if $\operatorname{div}(\varphi) = \operatorname{div}(\psi)$, then

$$\operatorname{div}(\varphi - \psi) = \operatorname{div}(\varphi) - \operatorname{div}(\psi) = 0.$$

It therefore suffices to show that, if $\phi \in PL(\Gamma)$ satisfies $\operatorname{div}(\phi) = 0$, then ϕ is constant. To see this, consider the set $A \subseteq \Gamma$ where ϕ obtains its minimum. Since Γ is compact,

Date: February 27, 2019.

FIGURE 4. A rational function that is constant outside a local neighborhood, and its associated divisor bottom

the set A is nonempty. For any point v in the boundary of A, we have $\operatorname{ord}_v(\phi) < 0$. Thus, if $\operatorname{div}(\phi) = 0$, the boundary of A must be empty. Since Γ is connected, this implies that $A = \Gamma$, so ϕ is constant.

Example 13.11. On any metric graph Γ , given a point $v \in \Gamma$, let $\epsilon \in \mathbb{R}$ be sufficiently small so that the open ball $B_{\epsilon}(v)$ contains no points of valence greater than 2 other than possibly v. Let χ be the rational function that takes the value ϵ on $\Gamma \setminus B_{\epsilon}(v)$, the value 0 at v, and has slope 1 on the edges in $B_{\epsilon}(v)$ emanating from v. Then χ has order of vanishing $-\operatorname{val}(v)$ at v and 1 at each of the boundary points of $B_{\epsilon}(v)$. In this way, we can view addition of $\operatorname{div}(\chi)$ as a continuous version of chip firing, where we specify not only the vertex v that we fire from, but also the distance ϵ that we fire the chips.

We note the following.

Lemma 13.12. The degree of a principal divisor is zero.

Proof. Let $\varphi \in PL(\Gamma)$, and let G be a model for Γ such that φ is linear on every edge of G. In other words, V(G) contains the support of $div(\varphi)$. For every edge e of G, let s_e denote the slope of φ along e. We see that the incoming slope of φ at one endpoint of e is s_e , and the incoming slope of φ at the other endpoint is $-s_e$. It follows that

$$\deg(\operatorname{div}(\varphi)) = \sum_{v \in V(G)} \operatorname{ord}_v(\varphi) = \sum_{e \in E(G)} [s_e - s_e] = 0.$$

Now that we have a notion of principal divisors on metric graphs, we can use it to define equivalence of divisors.

Definition 13.13. We say that two divisors D and D' on a metric graph Γ are equivalent if D - D' is principal. We define the Picard group of Γ to be the group of equivalence classes of divisors on Γ . That is,

$$\operatorname{Pic}(\Gamma) = \operatorname{Div}(\Gamma) / \operatorname{div}(\operatorname{PL}(\Gamma)).$$

The Jacobian $Jac(\Gamma)$ of Γ is the group of equivalence classes of divisors of degree zero.

The rank of a divisor on a metric graph is defined in exactly the same way as on a discrete graph. Since this definition is crucial to our interests, we record it here. CHIP FIRING

Definition 13.14. Given $D \in Div(\Gamma)$, the complete linear series of D is

$$|D| := \{ D' \sim D \mid D' \ge 0 \}.$$

The rank of D is the largest integer r such that $|D - E| \neq \emptyset$ for all effective divisors E of degree r.

See the paper of Haase–Musiker–Yu for details on the structure of |D|.