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The chip firing game is played with poker chips on the ver-
tices of a graph. Though seemingly simple, this game has
deep connections to various fields of mathematics. In this
article, we discuss one of these connections, to the theory
of algebraic curves. We will see that the chip firing is a
combinatorial analogue of Brill-Noether theory, the study
of divisors on algebraic curves. This observation allows us
to prove theorems in algebraic geometry using graph the-
ory, and vice versa.
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1. Basics of Algebraic Curves
Algebraic geometers are interested in the solutions to sys-
tems of polynomial equations, which are called varieties.
Among the simplest varieties are the one-dimensional
ones, which are called algebraic curves. To 19th century al-
gebraic geometers, a curve was simply a one-dimensional
subset of some ambient projective space, determined by
polynomial equations. In the 20th century, however,
much of mathematics underwent a fundamental shift,
with objects defined in terms of their abstract properties,
without reference to an ambient space. To a modern al-
gebraic geometer, a given curve is not equipped with a
specific embedding. Instead, we think of the curve as ad-
mitting many different maps to projective spaces, and an
interesting question is to describe all maps from the given
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curve to projective space. The study of suchmaps is known
as Brill-Noether theory. Readers interested in learning more
about the geometry of algebraic curves are encouraged to
read the standard text [ACGH85].

Two important invariants of such a map are its degree
and its rank. Given a curve 𝐶 and a map 𝜑 ∶ 𝐶 → ℙ𝑟 to
projective space, the degree of 𝜑 is the number of points in
the preimage of a general hyperplane. The rank of 𝜑 is the
dimension of the projective space spanned by the image
𝜑(𝐶). For example, Figure 1 depicts an embedding of a
curve in ℙ2. Because a general line meets the curve in four
points,1 the degree of this embedding is 4, and because the
curve spans the whole plane (that is, it is not contained in
a line), the rank of this embedding is 2.

Figure 1. An embedding of degree 4 and rank 2.

Given a curve 𝐶, it is natural to ask the following ques-
tion.

Question 1.1. Does 𝐶 possess a map of degree 𝑑 and rank
𝑟? If so, how many?

It is standard to recast this discussion in the equivalent
language of divisors. A divisor on a curve 𝐶 is a formal sum
of points of 𝐶. The degree of a divisor 𝐷 = ∑𝑝∈𝐶 𝐷(𝑝) ⋅ 𝑝
is the integer deg𝐷 = ∑𝑝∈𝐶 𝐷(𝑝). A divisor 𝐷 is called ef-
fective if its coefficients 𝐷(𝑝) are nonnegative for all 𝑝 ∈ 𝐶.
The connection between maps and divisors comes from
hyperplane sections, like the linear section depicted in Fig-
ure 1. If 𝜑 ∶ 𝐶 → ℙ𝑟 is a map of degree 𝑑, then the preim-
age of a hyperplane (with appropriate multiplicities) is an
effective divisor of degree 𝑑. We say that two effective divi-
sors 𝐷1 and 𝐷2 are linearly equivalent if there exists a map
from 𝐶 to a projective space such that both 𝐷1 and 𝐷2 are
preimages of hyperplanes. Equivalently, 𝐷1 and 𝐷2 are lin-
early equivalent if there is a rational function on 𝐶 with
zeros equal to 𝐷1 and poles equal to 𝐷2. In this way, we
see that equivalence classes of divisors on a curve 𝐶 corre-
spond in a natural way to maps from 𝐶 to projective space.

The set of hyperplanes in ℙ𝑟 forms an 𝑟-dimensional
space, and each hyperplane corresponds to an effective di-
visor in a single linear equivalence class. Thus, one can

1The astute reader will note that many lines do not appear to meet the curve
at all, because Figure 1 depicts only the points with real coordinates. This is
among the reasons that algebraic geometers prefer to work over algebraically
closed fields, though we tend to draw pictures like Figure 1 anyway.

define the rank of a divisor 𝐷 to be the dimension of its
complete linear series, which is the set of effective divisors
linearly equivalent to 𝐷. We can reinterpret the rank in
the following way. If 𝜑(𝐶) spans a projective space of di-
mension 𝑟, then there is a hyperplane passing through any
𝑟 points of 𝜑(𝐶). In other words, if 𝐷 is the preimage of a
general hyperplane, 𝐸 is the sum of the 𝑟 points, and 𝐸′ is
the sum of the other 𝑑 − 𝑟 points of 𝐶 mapping into the
hyperplane, then 𝐷 is linearly equivalent to 𝐸 +𝐸′. In par-
ticular, 𝐷 − 𝐸 is linearly equivalent to an effective divisor.
Thus, a divisor 𝐷 has rank at least 𝑟 if, for every effective
divisor 𝐸 of degree 𝑟, 𝐷 − 𝐸 is equivalent to an effective
divisor. If 𝐷 is not equivalent to an effective divisor, we
say that it has rank −1. The set of divisor classes on 𝐶 is
called the Picard group of 𝐶, denoted Pic(𝐶), and the set of
divisor classes of degree 𝑑 is denoted Pic𝑑(𝐶). We define

𝑊𝑟
𝑑 (𝐶) ≔ {[𝐷] ∈ Pic𝑑(𝐶) | rank(𝐷) ≥ 𝑟}.

The Brill-Noether varieties𝑊𝑟
𝑑 (𝐶) are central to the study of

algebraic curves. For example, Question 1.1 above can be
rephrased as follows.

Question 1.2. For which values of 𝑟 and 𝑑 is 𝑊𝑟
𝑑 (𝐶)

nonempty? In these cases, how “big” is it?

An early and important development in this theory was
the Riemann-Roch Theorem. To understand the statement,
we first need to define a few more terms. Any meromor-
phic 1-form on 𝐶 determines a divisor class. This is called
the canonical class, and typically denoted 𝐾𝐶 . The genus of
𝐶 is one more than the rank of its canonical class 𝐾𝐶 .

Riemann-Roch Theorem. Let 𝐶 be a curve of genus 𝑔, and
let 𝐷 be a divisor on 𝐶. Then

rank(𝐷) − rank(𝐾𝐶 − 𝐷) = deg𝐷 − 𝑔 + 1.

The Riemann-Roch Theorem has many important con-
sequences. The degree of the canonical divisor 𝐾𝐶 is 2𝑔−2.
Since every effective divisor has nonnegative degree, a di-
visor of negative degree must have rank −1. By Riemann-
Roch, it follows that every divisor of degree 𝑑 > 2𝑔 − 2
has rank 𝑑 − 𝑔. On a fixed curve 𝐶, the rank of a divisor is
therefore completely determined by its degree for all but
finitely many possible degrees. Using Riemann-Roch, it
is a straightforward exercise to compute the rank of every
divisor on a curve of genus zero, one, or two. The first in-
teresting case occurs in genus three—some curves of genus
three or more possess a divisor of degree 2 and rank 1, and
some do not. Those that do are are known as hyperelliptic
curves. More generally, the gonality of a curve 𝐶 is the min-
imum degree of a divisor of positive rank on 𝐶. Hyperel-
liptic curves are precisely the curves of gonality 2. The go-
nality of a curve is an important invariant that determines
many interesting things about the geometry of the curve.
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2. The Chip Firing Game
The discussion above has an interesting combinatorial
analogue. While the chip firing game has been studied
for decades, the perspective of it as combinatorial Brill-
Noether theory is relatively new. Throughout, we choose
our terminology and notation to reflect the analogy with
algebraic curves. All graphs are assumed to be finite, con-
nected, and loopless, though possibly with multiedges.
For more information on the chip firing game, we recom-
mend the textbooks [CP18,Kli19].

Definition 2.1. A divisor 𝐷 on a graph 𝐺 is a formal ℤ-
linear combination of vertices of 𝐺,

𝐷 = ∑
𝑣∈𝑉(𝐺)

𝐷(𝑣) ⋅ 𝑣

with 𝐷(𝑣) ∈ ℤ.
For example, Figure 2 depicts a divisor on the wedge of

two triangles. In this and other examples, a vertex with
coefficient zero is pictured as an unlabeled vertex.

1

1

Figure 2. A divisor on a graph.

Divisors on graphs were studied in combinatorics, com-
puter science, and dynamics long before they attracted the
interest of algebraic geometers. In these disciplines it is
more common to refer to divisors on graphs as chip config-
urations or abelian sandpiles. One can think of a divisor as
a stack of poker chips on each vertex of the graph, hence
the term “chip configuration.” From this perspective, the
vertices with negative coefficients are “in debt.”

In the chip firing game, there is only one move. We
choose a vertex to “fire,” which results in that vertex giving
a chip to each of its neighbors. More concretely, we have
the following definition.

Definition 2.2. The chip-firing move at a vertex 𝑣 takes a
divisor 𝐷 to 𝐷′, where

𝐷′(𝑤)={ 𝐷(𝑣) − val(𝑣) if 𝑤 = 𝑣,
𝐷(𝑤) + # of edges between 𝑤 and 𝑣 if 𝑤 ≠ 𝑣,

where val(𝑣) denotes the valence of the vertex 𝑣.
In our example, if we fire the top left vertex, we get the

divisor pictured in Figure 3.
Two divisors 𝐷,𝐷′ are linearly equivalent if 𝐷′ can be ob-

tained from 𝐷 by a sequence of chip-firing moves. In anal-
ogy with divisors on curves, a divisor 𝐷 = ∑𝑣∈𝑉(𝐺) 𝐷(𝑣) ⋅ 𝑣

2

−1

1

Figure 3. The result of firing a vertex.

is called effective if𝐷(𝑣) ≥ 0 for all 𝑣 ∈ 𝑉(𝐺), and the degree
of 𝐷 is the integer 𝐷 = ∑𝑣∈𝑉(𝐺) 𝐷(𝑣). Note that the degree
of a divisor is invariant under chip firing. The set of divisor
classes on 𝐺 is called the Picard group of 𝐺, denoted Pic(𝐺),
and the set of divisor classes of degree 𝑑 is denoted Pic𝑑(𝐺).
The set Pic𝑑(𝐺) is finite. Indeed, it is a consequence of Kir-
choff’s Matrix Tree Theorem that |Pic𝑑(𝐺)| is equal to the
number of spanning trees in 𝐺.

Given a divisor 𝐷 on a graph, how should we define its
rank? Its complete linear series is a finite set, so we cannot
define the rank of 𝐷 to be the dimension of this linear se-
ries. Our alternate definition of rank is more appropriate
to the combinatorial setting. We say that a divisor 𝐷 has
rank at least 𝑟 if, for every effective divisor 𝐸 of degree 𝑟,
𝐷 − 𝐸 is equivalent to an effective divisor. We may think
of this as a sort of game—startingwith a chip configuration
𝐷 on a graph 𝐺, our opponent is allowed to “steal” 𝑟 chips,
and then our job is to perform a sequence of chip-firing
moves to eliminate any possible debt. If we can always win
the game no matter how our opponent plays, then the di-
visor 𝐷 has rank at least 𝑟. As an example, we encourage
the reader to check that the divisor pictured in Figure 2 has
rank 1.

In analogy with Question 1.1, given a graph 𝐺, we may
ask the following.

Question 2.3. Does 𝐺 possess a divisor of degree 𝑑 and
rank 𝑟? If so, how many?

As an approach to Question 2.3, we can modify the
game described above to search for low-degree divisors of
positive rank. We are given a number of chips to place on
the graph, and after we place them, our opponent is al-
lowed to steal a chip, creating a debt of 1 at some vertex
of the graph. If we can eliminate the debt via a sequence
of chip-firing moves, no matter how our opponent plays,
then we have found a divisor of positive rank. In analogy
with algebraic curves, the minimum number of chips re-
quired to win this game is called the gonality of the graph.
The wedge of two triangles pictured in Figure 2 has gonal-
ity 2—the pictured divisor has the smallest degree among
all divisors of positive rank. In fact, as we shall see shortly,
every graph with first Betti number 2 has gonality 2. In
general, however, computing the gonality of a graph is NP-
hard [GSvdW20].

DECEMBER 2021 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1877



There has been significant work on the gonality of
graphs. There is a complete classification of hyperelliptic
graphs [Cha13] and a partial classification of graphs of go-
nality 3 [ADM+19]. The gonality of a graph is bounded
below by its treewidth [vDdBG20], an invariant that has
received a lot of attention in the combinatorics literature.

The genus of a graph 𝐺 is its first Betti number, 𝑔 =
|𝐸(𝐺)| − |𝑉(𝐺)| + 1. The canonical divisor of a graph 𝐺 is
the divisor

𝐾𝐺 ≔ ∑
𝑣∈𝑉(𝐺)

(val(𝑣) − 2) ⋅ 𝑣.

A simple double-counting argument shows that the degree
of 𝐾𝐺 is 2𝑔 − 2. Amazingly, the Riemann-Roch Theorem
also holds in this setting.

Riemann-Roch Theorem for graphs ([BN07]). Let 𝐺 be a
graph of genus 𝑔, and let 𝐷 be a divisor on 𝐺. Then

rank(𝐷) − rank(𝐾𝐺 − 𝐷) = deg𝐷 − 𝑔 + 1.
Neither the Riemann-Roch Theorem for curves nor the

Riemann-Roch Theorem for graphs is known to imply the
other. Nevertheless, in this setting the Riemann-Roch The-
orem has all the same consequences as it does for divisors
on curves. For example, Riemann-Roch implies that the
rank of the canonical divisor 𝐾𝐺 is 𝑔 − 1. Given a chip
configuration 𝐷 with some vertices in debt, we may ask
whether it is possible to perform a sequence of chip-firing
moves to eliminate the debt. This is equivalent to asking
whether the divisor 𝐷 has nonnegative rank. By Riemann-
Roch, if deg𝐷 ≥ 𝑔, then rank(𝐷) ≥ 0. In other words, if
the total number of chips is at least the genus of the graph,
then we can always eliminate the debt.

3. What’s the Connection?
The preceding discussion suggests that there is some deep
connection between the theory of divisors on graphs and
that of divisors on algebraic curves. The main idea behind
this connection is that of degeneration. While degeneration
arguments have been standard in algebraic geometry for
more than a century, many early-to-mid 20th century de-
velopments were required in order to give such arguments
a rigorous foundation. Given a curve, we perturb it in an
extreme and violent fashion, and then study this “degener-
ate curve.” It is often possible to discern geometric proper-
ties of the original curve from the degenerate one. Greater
detail on the results of this section can be found in [Bak08]
or the survey [BJ16].

For example, let 𝐹(𝑥, 𝑦, 𝑧) be a homogeneous polyno-
mial of degree 4, and consider the following family of
curves, parameterized by 𝑡:
𝐶𝑡 = {(𝑥, 𝑦, 𝑧) ∈ ℙ2 | 𝑡 ⋅ 𝐹(𝑥, 𝑦, 𝑧) + 𝑥𝑦𝑧(𝑥 + 𝑦 + 𝑧) = 0}.

For almost all values of 𝑡, the curve 𝐶𝑡 ⊂ ℙ2 is a smooth
plane quartic, such as the one illustrated in Figure 1. When

𝑡 = 0, however, the family of curves degenerates to a sin-
gular union of lines, pictured in Figure 4.

Figure 4. The curve 𝐶0 is a union of four lines.

The strength of this approach is that the degenerate
curve can be understood via combinatorics. The irre-
ducible components of 𝐶0 are just lines, and have no in-
teresting geometry. The geometry of 𝐶0 is completely de-
termined by the combinatorial data of which pairs of lines
meet. This information is recorded by the dual graph 𝐺 of
the curve 𝐶0. The vertices of the dual graph 𝐺 correspond
to components of𝐶0, and there is an edge between two ver-
tices for every point in the intersection of the correspond-
ing components. In this example, the dual graph has four
vertices, corresponding to the four lines, and each pair of
lines intersect in exactly one point, so the dual graph has
one edge between every pair of vertices. The dual graph is
therefore the complete graph 𝐾4, pictured in Figure 5.

Figure 5. The dual graph of 𝐶0 is the complete graph 𝐾4.

More generally, we may consider any one-parameter
family of curves 𝐶𝑡. If the special fiber 𝐶0 is a union of lines
(or more generally, rational curves), no three of which mu-
tually intersect and no two of which intersect nontransver-
sally, then one can construct the dual graph 𝐺 of 𝐶0 as
above. In order to discern properties of the curves 𝐶𝑡
from analogous properties of the graph 𝐺, the family must
satisfy certain technical hypotheses. For the technicality-
inclined reader, we let 𝐶 be a smooth curve over an arbi-
trary discretely valued field 𝐾, and we let 𝑅 be the corre-
sponding discrete valuation ring. (In our example above,
we have 𝐾 = ℂ((𝑡)) and 𝑅 = ℂ[[𝑡]].) A curve 𝒞 over 𝑅 is
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called a strongly semistable model for 𝐶 if 𝒞 is regular, it is
proper and flat over 𝑅, its general fiber is 𝐶, and its special
fiber 𝐶0 is reduced and has only ordinary double points
as singularities. The curve 𝐶 is the generic member of this
family—if certain properties hold for 𝐶, then they hold for
𝐶𝑡 for all 𝑡 in a dense open set.

By moving from the curve 𝐶 to the special fiber 𝐶0, and
then to the dual graph𝐺, we lose an extraordinary amount
of information. For example, the isomorphism class of a
plane quartic depends on several continuous parameters,
whereas a graph is determined by discrete data. It is re-
markable that we could learn anything about our original
curve by studying the graph. As we shall see, however, the
graph retains substantial information about divisors on 𝐶.

Now, consider a 1-parameter family of points on our 1-
parameter family of curves 𝐶𝑡. The family of points yields
a section as in Figure 6. Our technical hypotheses are re-
strictive enough to imply that any such section meets the
special fiber 𝐶0 in a smooth point. (More precisely, if 𝒞 is
a strongly semistable model for 𝐶, then every 𝐾-point on
𝐶 specializes to a smooth point of𝐶0.) Since every smooth
point of 𝐶0 lies on a unique component, and the compo-
nents of 𝐶0 correspond to vertices of the dual graph 𝐺, we
obtain a well-defined map from 𝐶(𝐾) to 𝑉(𝐺). Extending
linearly, we obtain a map from the group of 𝐾-divisors on
the curve 𝐶 to the group of divisors on the graph 𝐺. This
map preserves linear equivalence, so it descends to a map

Trop ∶ Pic𝐾(𝐶) → Pic(𝐺).
Note that this map preserves the degree. It is natural to ask
how our other invariant, the rank, behaves under this map.
This question has a simple answer.

Figure 6. A section of a 1-parameter family of curves.

Baker’s Specialization Lemma ([Bak08]). Let 𝐷 be a 𝐾-
divisor on 𝐶. Then

rank(𝐷) ≤ rank(Trop𝐷).

Returning to our example, consider the divisor 𝐷 pic-
tured in Figure 1, given by the intersection of the plane
quartic 𝐶 with a line. We saw above that this divisor has
degree 4 and rank 2. Assume that the line is in sufficiently
general position, so that it intersects each component of𝐶0
transversally. Fixing the line and letting𝐶 degenerate to𝐶0,
the intersection becomes a union of four points, one on
each of the four lines. The divisor 𝐷 therefore specializes
to the divisor on 𝐾4 with one chip on each of the four ver-
tices. By Baker’s Specialization Lemma, Trop𝐷 must have
rank at least 2. Indeed, Trop𝐷 is the canonical divisor on
𝐾4, and since 𝐾4 has genus 3, the canonical divisor has
rank 2 by Riemann-Roch.

In a different direction, we encourage the reader to
check that the complete graph 𝐾4 is not hyperelliptic. In
other words, no divisor of degree 2 on 𝐾4 has positive rank.
By Baker’s Specialization Lemma, if the curve 𝐶 is hyperel-
liptic, then so is the graph𝐾4, because the divisor of degree
2 and rank at least 1 on 𝐶 must specialize to a divisor of
degree 2 and rank at least 1 on the graph. It follows that
the curve 𝐶 is not hyperelliptic. In this way, we see that the
geometry of the curve is reflected by the combinatorics of
the graph, and vice versa.

A word of caution is in order here. The argument just
given shows only that there is no divisor of degree 2 and
rank 1 on 𝐶 that is defined over the field 𝐾. It is theoreti-
cally possible that such a divisor exists over some finite ex-
tension of 𝐾. This is an issue for algebraic geometers, who
often work over fields that are algebraically closed. One
way to handle this problem is via refinement. Given a graph
𝐺 and a positive integer 𝑒, define 1

𝑒
𝐺 to be the 𝑒th refinement

of 𝐺, obtained by subdividing each edge of 𝐺 into 𝑒 edges,
as pictured in Figure 7. If 𝐾′ is a valued field extension of
𝐾 of degree 𝑒, then there exists a strongly semistablemodel
for 𝐶𝐾′ such that the dual graph of the special fiber is the
𝑒th refinement of the original dual graph. To complete the
proof that 𝐶 is not hyperelliptic over any finite extension,
therefore, it suffices to show that the graph

1
𝑒
𝐾4 is not hy-

perelliptic for every positive integer 𝑒. We again leave this
to the reader.

Figure 7. The graph 1
4
𝐾4.
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A different approach to the problem is to use metric
graphs, also known as tropical curves. While this perspec-
tive is somewhat beyond the scope of the present article,
it is the one more commonly used in applications, such
as those discussed in the next section. A metric graph is
a metric space obtained from a graph by identifying each
edge with an interval of some positive length. Given a (dis-
crete) graph𝐺, consider the metric graph Γwhere all edges
have length 1. In Γ, the points of rational distance from the
vertices can be naturally identified with vertices of refine-
ments of 𝐺. In this way, metric graphs can be thought of
as the limits of discrete graphs under refinement.

4. Going Further
We now return to Questions 1.2 and 2.3: on a curve 𝐶
or graph 𝐺, for which values of 𝑟 and 𝑑 does there exist
a divisor of degree 𝑑 and rank 𝑟? In these cases, what is
the dimension of 𝑊𝑟

𝑑 (𝐶)? The answers to these questions
certainly depend on the curve or graph. As we have seen,
for example, some curves of genus 3 are hyperelliptic, and
some are not. In other words, there exists a curve 𝐶 of
genus 3 such that 𝑊1

2 (𝐶) is empty, and there also exists a
curve 𝐶′ of genus 3 such that 𝑊1

2 (𝐶′) is nonempty. One
might ask which situation is more typical—if one were
to select a genus 3 curve “at random,” is that curve more
likely to be hyperelliptic or nonhyperelliptic? More gener-
ally, what is the expected gonality of a curve of genus 𝑔?
Note that one can ask the same question about a graph:
what is the expected gonality of a random graph? (The an-
swer depends on what one means by a random graph; see
[DJKM16,DJ18].)

More precisely, there is a moduli space ℳ𝑔 parameteriz-
ing isomorphism classes of curves of genus 𝑔. Whenwe say
that a property is satisfied by a general curve of genus 𝑔, we
mean that the property is satisfied by all curves in a dense
open subset of the moduli space ℳ𝑔. In the particular ex-
ample above, the moduli space ℳ3 has dimension 6, and
the space of hyperelliptic curves is a subvariety of dimen-
sion 5. In this sense, almost all curves of genus 3 are non-
hyperelliptic. More generally, the answer to Question 1.2
for general curves is given by the celebrated Brill-Noether
Theorem of Griffiths and Harris.

Brill-Noether Theorem. Let 𝐶 be a general curve of genus 𝑔,
and define

𝜌(𝑔, 𝑟, 𝑑) ≔ 𝑔 − (𝑟 + 1)(𝑔 − 𝑑 + 𝑟).
1. If 𝜌(𝑔, 𝑟, 𝑑) < 0, then 𝑊𝑟

𝑑 (𝐶) is empty.
2. If 𝜌(𝑔, 𝑟, 𝑑) ≥ 0, then dim𝑊𝑟

𝑑 (𝐶) = 𝜌(𝑔, 𝑟, 𝑑).
Chip firing allows us to translate questions about the

geometry of general curves into combinatorial problems
about graphs. In [CDPR12], an alternate proof of the Brill-
Noether Theorem is given, using chip firing. To see how
this works, let us briefly return to the case of hyperelliptic

Figure 8. The chain of loops.

curves in ℳ3. The set of nonhyperelliptic curves is open
in ℳ3, and is therefore dense in ℳ3 if and only if it is
nonempty. To show that the general curve of genus 3
is nonhyperelliptic, it therefore suffices to find one non-
hyperelliptic curve of genus 3. By Baker’s Specialization
Lemma, it’s actually enough to find a nonhyperelliptic
graph of genus 3. Indeed, we found such a graph in the
previous section, and used it to show that the curve 𝐶 from
Figure 1 is itself nonhyperelliptic.

More generally, to prove the first statement above, fix in-
tegers 𝑔, 𝑟, and 𝑑 such that 𝜌(𝑔, 𝑟, 𝑑) is negative. By Baker’s
Specialization Lemma, it suffices to exhibit a family of
graphs of genus 𝑔, closed under refinement, that possess
no divisor of degree 𝑑 and rank at least 𝑟. This property
is satisfied by the chain of loops pictured in Figure 8, pro-
vided that the ratio of the number of edges on the top of
each loop to the number on the bottom is sufficiently large.
More precisely, [CDPR12] provides a complete answer to
Question 2.3 when the graph 𝐺 is a sufficiently general
chain of loops. It remains an open problem to find other
infinite families of graphs with no divisors of degree 𝑑 and
rank 𝑟, when 𝜌(𝑔, 𝑟, 𝑑) < 0.

With a little more work, one can also use this graph
to obtain the second part of the Brill-Noether Theorem.
Indeed, this graph has proven to be a remarkably useful
tool for studying the Brill-Noether theory of general curves.
It can also be used to study the tangent space to 𝑊𝑟

𝑑 (𝐶)
[JP14] and the Hilbert functions of divisor classes on gen-
eral curves [JP16]. If we relax the condition that the ra-
tio of the number of edges on the top of each loop to
the number on the bottom is sufficiently large, then we
can use the graph to study general curves in the Hurwitz
space ℋ𝑔,𝑘, parameterizing curves of genus 𝑔 and gonal-
ity 𝑘 [Pfl17, JR21,CJ20]. The chain of loops has also been
used in [LU21,CLRW21] to study the Brill-Noether theory
of general Prym curves.

These results demonstrate the potential for using graph
theory to establish results in algebraic geometry. But it is
also possible to go in the other direction, using algebraic
geometry to learn more about graphs. For example, in a
related (and historically earlier) direction, it was shown
independently by Kempf and Kleiman-Laksov that if 𝐶 is
any curve of genus 𝑔, then

dim𝑊𝑟
𝑑 (𝐶) ≥ 𝜌(𝑔, 𝑟, 𝑑).

This has the following, purely combinatorial, conse-
quence.

Theorem 4.1 ([Bak08]). Let 𝐺 be a graph of genus 𝑔, and fix
integers 𝑟 and 𝑑 such that 𝜌(𝑔, 𝑟, 𝑑) ≥ 0. Then there exists a
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positive integer 𝑒 such that the refinement 1
𝑒
𝐺 possesses a divisor

of degree 𝑑 and rank at least 𝑟.

Although Theorem 4.1 is a completely combinatorial
statement, there is currently no known proof of this theo-
rem that does not use algebraic geometry. A purely com-
binatorial proof has thus far remained elusive. It is also
unknown whether Theorem 4.1 holds without passing to
a refinement—that is, whether the integer 𝑒 can always be
taken to be 1. This is known as the Brill-Noether Existence
Problem, and it has been solved only in small genus cases.

Many open questions remain concerning the geometry
of general curves. Chip firing provides a promising ap-
proach to these problems using combinatorial tools. At
the same time, ideas from geometry can be applied to con-
jectures in graph theory. By developing connections be-
tween two diverse areas of mathematics, we heighten our
understanding of each.
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