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Abstract. We show that the expected gonality of a random graph is asymp-

totic to the number of vertices.

1. Introduction

In the moduli space of curves, the locus of Brill-Noether general curves is a
dense open subset [GH80]. In the moduli space of tropical curves, however, the
Brill-Noether general locus is open [LPP12, Len14] and non-empty [CDPR12], but
it is not dense [Jen14]. A natural question, therefore, is how likely is it that a graph
is Brill-Noether general?

In this paper, we approach this question by studying the gonality of Erdös-Rényi
random graphs. Recall that a random graph G(n, p) is obtained by fixing n vertices
and, for each pair of vertices, introducing an edge between them with probability
p. It is common to define the probability p as a function of n, and to consider the
expected value of combinatorial invariants as n increases. Throughout, we use P
and E to denote the probability and expected value, respectively.

The current article is a natural follow-up to other recent work on the divisor
theory of random graphs. Most notably, in [Lor08], Lorenzini asks about the dis-
tribution of divisor class groups of random graphs, and in [CLP13] it is conjectured
that they are distributed according to a variation of the Cohen-Lenstra heuris-
tics. This conjecture is proved in [Woo14], expanding on the preliminary work of
[CKL+14].

Before stating our main result, we briefly recall the basic theory of divisors on
graphs. For a more detailed account, see [BN07] and [Bak08]. A divisor on a
simple graph G is an element of the free abelian group on the vertices of G, and
a divisor D =

∑
v∈V (G) avv is said to be effective if av ≥ 0 for all v. Given a

divisor D =
∑

v∈V (G) avv and a vertex v′, we may fire v to obtain a new divisor

D′ =
∑

v∈V (G) bvv, where

bv =

 av − val(v) if v = v′

av + 1 if v is adjacent to v′

av otherwise

 .

Two divisors are equivalent if one can be obtained from the other by firing a se-
quence of vertices, and we say that a divisor D has positive rank if D−v is equivalent
to an effective divisor for all vertices v in G. The gonality gon(G) is the smallest
degree of a divisor with positive rank. Our main result is the following.

Theorem 1.1. Let p(n) = c(n)
n , and suppose that c(n)� n is unbounded. Then

E(gon(G(n, p))) ∼ n.
1
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Theorem 1.1 essentially says that the expected gonality of a random graph is
as high as possible. We note, however, that random graphs are not Brill-Noether

general, as the genus of a random graph is asymptotically c(n)n
2 , and if c(n) is

unbounded, this grows faster than n. From this perspective, it may be more natural
to study the gonality of random regular graphs, as the genus of such graphs grows
in proportion to the number of vertices. The case of 3-regular graphs would be
particularly interesting, as such graphs correspond to top-dimensional strata of the
moduli space of tropical curves.

Although Theorem 1.1 follows directly from earlier work, it appears to be un-
known to experts in tropical Brill-Noether theory. At the time of writing, we became
aware of simultaneous work by Amini and Kool, in which they use an improvement
on the spectral methods of [CFK13] to show that the gonality of a random graph
is bounded above and below by constant multiples of n [AK14]. Our results are
essentially a tightening of these bounds, so that both upper and lower bounds are
asymptotic to n, which indeed is conjectured in [AK14, Section 5.2]. The techniques
of [AK14] apply additionally to metric graphs, which we do not discuss here, and
to the case of random regular graphs, which they show to have gonality bounded
above and below by constant multiples of n as well.

Also of note is the bound that we provide on the error term n−E(gon(G(n, p)))
(see Theorem 3.3). In the future, it would be interesting to explore with what
precision we can bound this term.

A more complete study of the Brill-Noether theory of random graphs would
involve divisors of rank greater than one. A natural generalization of the current
line of inquiry would be to study the Clifford index of random graphs, defined as

Cliff(G) := min
D∈Jac(G)

{deg(D)− 2r(D)|r(D) > 0 and r(KG −D) > 0}.

Note that, if the minimum in this expression is obtained by a divisor of rank one,
then Cliff(G) = gon(G)−2. The Clifford index of an algebraic curve C is known to
always be either gon(C) − 2 or gon(C) − 3 [CM91]. The corresponding statement
remains open for graphs, but if true, it would imply that the Clifford index of a
random graph is asymptotic to the number of vertices as well.
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our thanks to everyone involved in the program, and in particular to Sam Payne,
who suggested this project. We also thank Matt Kahle for a particularly fruitful
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2. A Lower Bound

In this section, we obtain a lower bound on the expected gonality of a random
graph. The first step is to identify a lower bound for the gonality of an aribitrary
graph. This is done in [dBG14], where it is shown that the treewidth of a graph is
a lower bound for the gonality.

Definition 2.1. A tree decomposition of a graph G is a tree T whose nodes are
subsets of the vertices of G, satisfying the following properties:

(1) Each vertex of G is contained in at least one node of T .
(2) If two nodes of T both contain a given vertex v, then all nodes of the tree

in the unique path between these two nodes must contain v as well.
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(3) If two vertices v and w are adjacent in G, then there is a node of T that
contains both v and w.

The width of a tree decomposition is one less than the number of vertices in its
largest node. The treewidth tw(G) of a graph G is the minimum width among all
possible tree decompositions of G.

Proposition 2.2. [dBG14] Let G be a simple graph. Then

gon(G) ≥ tw(G).

Although we will not use it, we note the following simple consequence.

Corollary 2.2.1. For a simple graph G,

gon(G) ≥ min{val(v)|v ∈ V (G)}.

Proof. The result follows immediately from Proposition 2.2 and the fact that tw(G) ≥
min{val(v)|v ∈ V (G)} (see [BK11]). �

The treewidth of random graphs has been studied extensively in [WLCX11] and
[Gao12].

Lemma 2.3. [WLCX11] Let p(n) = c(n)
n , and suppose that c(n)� n is unbounded.

Then
lim
n→∞

P(tw(G(n, p)) ≥ n− o(n)) = 1.

Theorem 2.4. Let p(n) = c(n)
n , and suppose that c(n)� n is unbounded. Then

lim
n→∞

P(gon(G(n, p)) ≥ n− o(n)) = 1.

Proof. By Lemma 2.3, the treewidth is bounded below with high probability by
n−o(n). Furthermore, by Proposition 2.2, we know that gonality is bounded below
by the treewidth, so with high probability the gonality is also bounded below by
n− o(n). �

3. An Upper Bound

In this section, we obtain an upper bound on the expected gonality of a random
graph. Together with the results of the previous section, this will imply that the
gonality of a random graph is asymptotically equal to the number of vertices. We
note that the number of vertices n is a very simple upper bound for the gonality
of a graph, and together with Theorem 2.4, this would be enough to establish the
main theorem. We actually go a bit further and obtain a bound on the expected
value of n−gon(G(n, p)). In the future, it would be interesting to explore this with
higher precision.

Recall that an independent set in a graph is a set of vertices, no pair of which
are connected by an edge. The independence number α(G) of a graph G is defined
to be the maximal size of an independent set.

Theorem 3.1. If G is a simple graph with n vertices, then gon(G) ≤ n− α(G).

Proof. Let I be a maximal independent set, and let D be the sum of the vertices
in the complement of I. We will show that D has positive rank. If v /∈ I, then
D − v is effective by definition. On the other hand, if v ∈ I, then since all of the
neighbors of v are not in I and the graph is simple, by firing all of the vertices other
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than v we obtain an effective divisor equivalent to D with at least one chip on v.
It follows that D has rank at least one, hence gon(G) ≤ deg(D) = n− α(G). �

Note that gonality n − 1 is achieved by the complete graph Kn, so this bound
is sharp. Note further that the complete graph is the only simple graph with n
vertices whose gonality is n− 1.

The expected independence number of a random graph has been studied in
[Fri90].

Lemma 3.2. [Fri90] Let p(n) = c(n)
n , and suppose that c(n) � n is unbounded..

For any ε > 0, we have

lim
n→∞

P(|α(G(n, p))− 2

p(n)
(log c(n)− log log c(n)− log 2 + 1)| ≤ ε

p(n)
) = 1.

From this, we can conclude the following.

Theorem 3.3. Let p(n) = c(n)
n , and suppose that c(n)� n is unbounded. Then

lim
n→∞

P(gon(G(n, p)) ≤ n− 2

p(n)
(log c(n)− log log c(n)− log 2 + 1)) = 1.

Proof. By Lemma 3.2, for any ε > 0, we have

α(G(n, p)) >
2

p(n)
(log c(n)− log log c(n)− log 2 + 1− ε)

with probability 1 as n approaches infinity. By Theorem 3.1, the number n −
α(G(n, p)) is an upper bound for the gonality of G(n, p). �

Proof of Theorem 1.1. By Theorem 3.3, the gonality of a random graph is bounded
above by n − o(n). Similarly, by Theorem 2.4, the gonality of a random graph is
bounded below by n− o(n). It follows that

lim
n→∞

1

n
E(gon(G(n, p))) = lim

n→∞

n− o(n)

n
= 1.

�
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