
Jordan Canonical Form

Recall the following definition:

Definition

1. We say that two square matrices A and B are similar provided there exists an invertible

matrix P so that  .

2. We say a matrix A is diagonalizable if it is similar to a diagonal matrix.

We noted in an earlier unit that not all square matrices are diagonalizable.  The following

theorem yields necessary and sufficient conditions for a square matrix to be diagonalizable.

Theorem

An   matrix A is diagonalizable if and only if  A has n linearly independent eigenvectors.

Example 

1. Let  .  Then

.

We see that   are the associated eigenvalues for A.  We seek the

corresponding eigenspaces:

The null space for



is  

and the null space for

 is  .  Since

,

the three vectors   are linearly independent and so by the 

above theorem the given matrix is diagonalizable.  In particular,

.



We note that the columns for   consist of the set of three linearly 

independent eigenvectors for A.  (Hold that thought!)

2. Let  .  Then

The eigenspace corresponding to   is given by   and the 

eigenspace corresponding to   is given by  .  Since we have only three



linearly independent eigenvectors and the given matrix   is of

size  , the above theorem tells us that  A  is not diagonalizable.

While the matrix   is not diagonalizable, it is similar to a matrix that is

“nearly” diagonal:

       .

The matrix on the right-hand side of the above is an example of a matrix in Jordan Canonical

Form.  Here we note that  

,  , and  

but 



.

Hence, three of the four columns of  

consist of (linearly independent) eigenvectors of A.  (Hold that thought!)

We illustrate the notion of a Jordan matrix via two sets of examples.

Example

1.  The following are Jordan matrices:

  

 



 

2.  The following are not Jordan matrices:

 

  

Example

1.  The only   Jordan matrices are   (the   may or may not be distinct) and 

.

2.  The only   Jordan matrices are  



  

where the   are not necessarily distinct.

3.  The only   Jordan matrices are

 

 

where   are not necessarily distinct and the “blocks” may be permuted.

An   matrix of the form



is called a Jordan block.  An   matrix  J  is said to be in Jordan canonical form if it is a

matrix of the form

where each    is either a diagonal matrix or a Jordan block matrix.  That is, a Jordan matrix is

a matrix with Jordan blocks down the diagonal and zeros everywhere else.

Theorem

Every   matrix is similar to a matrix in Jordan canonical form.  That is, for every matrix  A 

there exists an invertible matrix M so that   where  J  is in Jordan canonical form.

The “trick” to producing the Jordan matrix  J  is to  find the invertible matrix M  having the

desired properties.  As this process is similar to diagonalizing a matrix, we will see that the

matrix M consists of columns of eigenvectors or “generalized” eigenvectors.  

Recall that an eigenvector  v  associated with the eigenvalue   for  A  satisfies the



equation  .

Definition

A nonzero  n-vector  v  is called a generalized eigenvector of rank r  associated with the

eigenvalue   if and only if   and  .

We note that a generalized eigenvector of rank 1 is an ordinary eigenvector associated with  .

Example

Earlier we observed that  

    

and that  .  It can be shown that   and so the

vector   is a generalized eigenvector of rank 2 for  .  So, the matrix 

 is now seen to have columns consisting of either eigenvectors or



generalized eigenvectors.

Theorem

If    is an eigenvalue of algebraic multiplicity m of the matrix A, then there are m linearly

independent generalized eigenvectors associated with  .

Example

For the eigenvalue of   for the matrix   we have  three linearly

independent generalized eigenvectors   (with ranks of 1, 1, and 2,

respectively). 

Example (Focus on the flow, not the details!)

Let  .  Then

.

Direct, nontrivial computations show that for   we have that



1.  and the associated null space has a basis

consisting of  .  Hence, all rank 1 generalized eigenvectors are in this null

space.  We note here that    has geometric multiplicity of 1.

2.  and the associated null space has a basis

consisting of  .    Hence, all rank 2 generalized eigenvectors are in this

null space but since   this subspace also contains the rank 1

generalized eigenvectors too.



3.  and the associated null space has a basis

consisting of  .  Hence, all rank 3 generalized eigenvectors are

in this null space (as well as the rank 2 and rank 1 generalized eigenvectors).

4.  and the associated null space has a standard basis consisting of 

.  Hence, all rank 4 generalized eigenvectors are in this

null space (as well as the rank 3, rank 2 and rank 1 generalized eigenvectors).  One can

show that 

is a linearly independent set of generalized eigenvectors (one of rank 1, one of rank 2,

one  of rank 3, and one of rank 4).



To construct the matrix  M  so that   is in Jordan canonical form we are

in general not interested in any set of linearly independent generalized eigenvectors but in a set

of linearly independent generalized eigenvectors related in a particular manner.  

Example - Continued

Let  .  Then the eigenvalue of   has algebraic

multiplicity 4 and geometric multiplicity 1.  The vector   is a generalized eigenvector

of rank 4.  We now construct a chain using   as a seed:



 ( = eigenvector since  ).

The set   is a linearly independent set of generalized eigenvectors for  

(one of rank 1, one of rank 2, one of rank 3, and one of rank 4).  Define a matrix P by

.

Then

.

We conclude that   is similar to matrix in Jordan canonical

form.

Example (algebraic multiplicity 3, geometric multiplicity 1)

Let  .  Then   and the null space for 



 is given by  .  Thus,    has algebraic

multiplicity of 3 and geometric multiplicity of 1.  We find that the null space for

is given by   and the null space for

has the standard basis of  .  So, set

,

, and

 (= eigenvector since  ).

Define



.

We then see that

Hence, A is similar to a matrix in Jordan canonical form.

Example

Let  .  Then    and the null space

of    is given by  .  Thus,    has algebraic multiplicity 4 and

geometric multiplicity 2.  Here

and



.

Observe here that we cannot arbitrarily choose   from among  

as    has rank 2 rather than rank three (why?). Set

,

, and

  ( = eigenvector as  ).



Unfortunately, at this point we only have three linearly independent generalized eigenvectors for 

.  So, we seek another chain of generalized eigenvectors of length one.  That is, we seek

an eigenvector (why?) that is linearly independent from  .  Set  .  Now,

since  ,  the matrix P given by

is invertible and

.

Again, we see that  A  is similar to a matrix in Jordan canonical form.

Example

Let  .  Then    and the null space of 



 is given by  .  Thus,    has algebraic multiplicity 4 and

geometric multiplicity 2.  Here

.

So, we set

and

.

As before   and  is an eigenvector associated with  .  

Our set of generalized eigenvectors has cardinality two and so we seek either a single chain of



length two or two chains of length one to bring the total number of generalized eigenvectors up

to four.  We try

.

We note that   for in this case   which is an eigenvector.  Why is this

problematic?

Set

and observe that  

  ( = eigenvector).

Here we set



and see that

.

Yet again we find that  A  is similar to a matrix in Jordan canonical form.

Example - Characteristic Polynomial of 

1.  The matrix    has characteristic polynomial of 

.  The eigenvalue    has algebraic multiplicity 4 and

geometric multiplicity 1.  The matrix A has Jordan canonical form of  .

2.  The matrix    has characteristic polynomial of 

.  The eigenvalue    has algebraic multiplicity 4 and



geometric multiplicity 2.  The matrix A has Jordan canonical form of  .

3.  The matrix    has characteristic polynomial of 

.  The eigenvalue    has algebraic multiplicity 4 and

geometric multiplicity 2.  The matrix A has Jordan canonical form of  .

Example - Multiple eigenvalues.  (Details missing!!)

1. Let  .  Since  A  is upper triangular,  we see that the

eigenvalues are  .  For   we find that the null space for   is given



by  ,  the null space for   is given by    and the null

space for   is also given by  .  This sequence has

stalled and nothing new will be added.  (Why?  Btw, what is the algebraic multiplicity of 

?)  We take   (do we really have a choice here?) and then  

.

For    we find that the null space for   is given by  



.  Since the algebra multiplicity equals the geometric

multiplicity, we are done with respect to  .  (Why?)

Set

.

Then

.



2. Let  .  As  A  is upper triangular we see that 

  is an eigenvalue with algebraic multiplicity 6 and    is an eigenvalue with

algebraic multiplicity 2.

Case  :

  (rank 4),    (rank 3),



  (rank 2),    (rank 1)

Set    (rank 2),    (rank 1)

Case  :

Set    (rank 2),    (rank 1)



Now, if  , then

.


