Jordan Canonical Form

Recall the following definition:

Definition

- 1. We say that two square matrices *A* and *B* are *similar* provided there exists an invertible matrix *P* so that $B = P^{-1} A P$.
- 2. We say a matrix *A* is *diagonalizable* if it is similar to a diagonal matrix.

We noted in an earlier unit that not all square matrices are diagonalizable. The following theorem yields necessary and sufficient conditions for a square matrix to be diagonalizable.

Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

<u>Example</u>

1. Let $\mathbf{A} = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$. Then

$$Det (A - \lambda I_n) = Det \begin{pmatrix} 5 - \lambda & 4 & 2 \\ 4 & 5 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{pmatrix}$$
$$= -\lambda^3 + 12\lambda^2 - 21\lambda + 10$$
$$= -(\lambda - 1)^2 (\lambda - 10)$$

We see that $\lambda = 1$ & $\lambda = 10$ are the associated eigenvalues for *A*. We seek the corresponding eigenspaces:

The null space for

$$\begin{pmatrix} 5 - \lambda & 4 & 2 \\ 4 & 5 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{pmatrix} = \begin{pmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

is $\begin{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix}$

and the null space for

$$\begin{pmatrix} 5 - \lambda & 4 & 2 \\ 4 & 5 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{pmatrix} \stackrel{=}{\underset{\lambda=10}{=}} \begin{pmatrix} -5 & 4 & 2 \\ 4 & -5 & 2 \\ 2 & 2 & -8 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

is $\left(\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \right)$. Since
$$Det \left(\begin{pmatrix} -1 & -1 & 2 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} \right) = -9 \neq 0,$$

the three vectors $\left\{ \begin{pmatrix} -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} \right\} = -9 \neq 0,$

above theorem the given matrix is diagonalizable. In particular,

$$\begin{pmatrix} -1 & -1 & 2 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} -1 & -1 & 2 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{pmatrix}.$$

We note that the columns for $\begin{pmatrix} -1 & -1 & 2 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$ consist of the set of three linearly

independent eigenvectors for A. (Hold that thought!)

2. Let
$$A = \begin{pmatrix} 2 & 0 & 1 & -3 \\ 0 & 2 & 10 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$
. Then

$$\begin{vmatrix} 2 - \lambda & 0 & 1 & -3 \\ 0 & 2 - \lambda & 10 & 4 \\ 0 & 0 & 2 - \lambda & 0 \\ 0 & 0 & 0 & 3 - \lambda \end{vmatrix} = \lambda^4 - 9\lambda^3 + 30\lambda^2 - 44\lambda + 24$$

$$= (\lambda - 2)^3 (\lambda - 3).$$

The eigenspace corresponding to
$$\lambda = 2$$
 is given by $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ and the

eigenspace corresponding to
$$\lambda = 3$$
 is given by $\begin{pmatrix} -3 \\ 4 \\ 0 \\ 1 \end{pmatrix}$. Since we have only three

linearly independent eigenvectors and the given matrix
$$A = \begin{pmatrix} 2 & 0 & 1 & -3 \\ 0 & 2 & 10 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$
 is of

size 4×4 , the above theorem tells us that A is not diagonalizable.

While the matrix
$$A = \begin{pmatrix} 2 & 0 & 1 & -3 \\ 0 & 2 & 10 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$
 is not diagonalizable, it is similar to a matrix that is

"nearly" diagonal:

(´ 0	1	0	-3	-1	(2	0	1	-3)	(0	1	0	-3 4 0 1		(2	0	0	0	
	1	10	0	4		0	2	10	4	1	10	0	4		0	2	1	0	
	0	0	1	0		0	0	2	0	0	0	1	0	=	0	0	2	0	•
	0	0	0	1)		0)	0	0	3)	0)	0	0	1,		0	0	0	3,)

The matrix on the right-hand side of the above is an example of a matrix in *Jordan Canonical Form*. Here we note that

$$\left(A - 2I_{4}\right) \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} = 0_{4\times 1}, \ \left(A - 2I_{4}\right) \begin{pmatrix} 1\\10\\0\\0\\0 \end{pmatrix} = 0_{4\times 1}, \text{ and } \left(A - 3I_{4}\right) \begin{pmatrix} -3\\4\\0\\1 \end{pmatrix} = 0_{4\times 1}$$

but

$$\begin{pmatrix} A - 2I_4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \neq 0_{4 \times 1}.$$

Hence, three of the four columns of

0	1	0	-3)
1	10	0	4
0	0	1	0
0	0	0	1)

consist of (linearly independent) eigenvectors of A. (Hold that thought!)

We illustrate the notion of a *Jordan matrix* via two sets of examples.

<u>Example</u>

1. The following are Jordan matrices:

$ \left(\begin{array}{cc} 2 & 0\\ 0 & 6 \end{array}\right) \qquad \left(\begin{array}{cc} 3\\ 0 \end{array}\right) $	$ \begin{pmatrix} 0 \\ 3 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix} $			
$\left(\begin{array}{rrrr} 7 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -8 \end{array}\right)$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(12 0 0	1 12 0	0 1 12
$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				

(i	1	0	0	0)	(i	1	0	0	0)		(6	1	0	0	0)
0	i	0	0	0	0	i	0	0	0		0	6	1	0	0
0	0	i	0	0	0	0	i	0	0		0	0	6	1	0
0	0	0	3	1	0	0	0	3	0		0	0	0	6	1
(0	0	0	0	3)	0	0	0	0	3))	(0	0	0	0	6)

2. The following are not Jordan matrices:

 $\begin{pmatrix} 2 & 0 \\ 1 & 6 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 0 & 5 \end{pmatrix}$ $\begin{pmatrix} 12 & 0 & 0 \\ 1 & 12 & 1 \\ 0 & 0 & 12 \end{pmatrix} \begin{pmatrix} 5 & 10 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -9 \end{pmatrix} \begin{pmatrix} 12 & 1 & 0 \\ 0 & 12 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 6 & 1 & 0 & 0 & -3 \\ 0 & 6 & 1 & 0 & 0 \\ 0 & 0 & 6 & 1 & 0 \\ 0 & 0 & 0 & 6 & 1 \\ 0 & 0 & 0 & 0 & 6 \end{pmatrix}$

Example

1. The only
$$2 \times 2$$
 Jordan matrices are $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ (the λ 's may or may not be distinct) and

 $\left(\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right).$

2. The only 3×3 Jordan matrices are

$$\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \qquad \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & \lambda_2 \end{pmatrix} \qquad \begin{pmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix} \qquad \begin{pmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 1 \\ 0 & 0 & \lambda_1 \end{pmatrix}$$

where the λ_1 , λ_2 , & λ_3 are not necessarily distinct.

3. The only 4×4 Jordan matrices are

(λ1	0	0	0	(λ	1	0	0)
			0		0	λ	0	0 0
			0		0	0	λ2	0
0	0	0	λ	l	0	0	0	λ_3

(λ	1	0	0	(λ	1	0	0)
	0	λ	1	0		0	λ	0	0
	0	0	λ ₁	0		0	0	λ2	0 0 1
	0	0	0	λ_2		0	0	0	λ_2

(λ	1	0	0)	
0	λ	1	0	
0	0	λ	1	
(0	0	0	λ,)	

where λ_1 , λ_2 , λ_3 & λ_4 are not necessarily distinct and the "blocks" may be permuted.

An $m \times m$ matrix of the form

(λ	1	0	0	0	0 0 0 0	0
0	λ	1	0	0	0	0
0	0	λ	1	0	0	0
0	0	0	λ	1	0	0
:	:	:	:	:	:	:
0	0	0	0	0	λ 0	1
(0	0	0	0	0	0	λ

is called a *Jordan block*. An $n \times n$ matrix J is said to be in *Jordan canonical form* if it is a matrix of the form

$$\begin{pmatrix} J_1 & & & 0 \\ & J_2 & & & \\ & & & \dots & \\ 0 & & & & J_s \end{pmatrix}$$

where each J_k is either a diagonal matrix or a Jordan block matrix. That is, a Jordan matrix is a matrix with Jordan blocks down the diagonal and zeros everywhere else.

<u>Theorem</u>

Every $n \times n$ matrix is similar to a matrix in Jordan canonical form. That is, for every matrix A there exists an invertible matrix M so that $J = M^{-1} A M$ where J is in Jordan canonical form.

The "trick" to producing the Jordan matrix J is to find the invertible matrix M having the desired properties. As this process is similar to diagonalizing a matrix, we will see that the matrix M consists of columns of eigenvectors or "generalized" eigenvectors.

Recall that an eigenvector v associated with the eigenvalue λ for A satisfies the

equation $(A - \lambda I_n) v = 0$.

Definition

A nonzero *n*-vector v is called a *generalized eigenvector of rank* r associated with the eigenvalue λ if and only if $(A - \lambda I_n)^r v = 0$ and $(A - \lambda I_n)^{r-1} v \neq 0$.

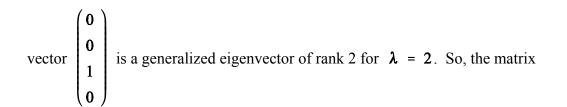
We note that a generalized eigenvector of rank 1 is an ordinary eigenvector associated with λ .

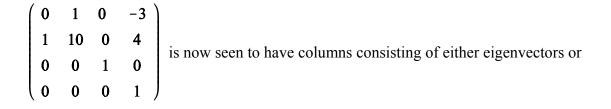
Example

Earlier we observed that

$$\begin{pmatrix} 0 & 1 & 0 & -3 \\ 1 & 10 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 0 & 1 & -3 \\ 0 & 2 & 10 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & -3 \\ 1 & 10 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

and that
$$\begin{pmatrix} A - 2I_4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \neq 0_{4 \times 1}$$
. It can be shown that $\begin{pmatrix} A - 2I_4 \end{pmatrix}^2 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = 0_{4 \times 1}$ and so the





generalized eigenvectors.

Theorem

If λ is an eigenvalue of algebraic multiplicity *m* of the matrix *A*, then there are *m* linearly independent generalized eigenvectors associated with λ .

<u>Example</u>

For the eigenvalue of
$$\lambda = 2$$
 for the matrix $\begin{pmatrix} 2 & 0 & 1 & -3 \\ 0 & 2 & 10 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ we have three linearly independent generalized eigenvectors $\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 10 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ (with ranks of 1, 1, and 2,

respectively).

Example (*Focus on the flow, not the details!*)

Let
$$A = \begin{pmatrix} 4 & -4 & -11 & 11 \\ 7 & -16 & -48 & 46 \\ -6 & 16 & 43 & -38 \\ -3 & 9 & 23 & -19 \end{pmatrix}$$
. Then

$$Det[A - \lambda I_4] = \lambda^4 - 12\lambda^3 + 54\lambda^2 - 108\lambda + 81 = (\lambda - 3)^4.$$

Direct, nontrivial computations show that for $\lambda = 3$ we have that

1.
$$A - \lambda I_4 = \begin{pmatrix} 1 & -4 & -11 & 11 \\ 7 & -19 & -48 & 46 \\ -6 & 16 & 40 & -38 \\ -3 & 9 & 23 & -22 \end{pmatrix}$$
 and the associated null space has a basis

consisting of
$$\begin{cases} \begin{pmatrix} -1 \\ -3 \\ 2 \\ 1 \end{pmatrix} \end{cases}$$
. Hence, all rank 1 generalized eigenvectors are in this null

space. We note here that $\lambda = 3$ has geometric multiplicity of 1.

2.
$$(A - \lambda I_4)^2 = \begin{pmatrix} 6 & -5 & -6 & 3 \\ 24 & -21 & -27 & 15 \\ -20 & 18 & 24 & -14 \\ -12 & 11 & 15 & -9 \end{pmatrix}$$
 and the associated null space has a basis

consisting of
$$\begin{cases} \begin{pmatrix} 2 \\ 3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -3 \\ -6 \\ 2 \\ 0 \end{pmatrix} \end{cases}$$
. Hence, all rank 2 generalized eigenvectors are in this

null space but since
$$\begin{pmatrix} 2\\3\\0\\1 \end{pmatrix} + \begin{pmatrix} -3\\-6\\2\\0 \end{pmatrix} = \begin{pmatrix} -1\\-3\\2\\1 \end{pmatrix}$$
 this subspace also contains the rank 1

generalized eigenvectors too.

3.
$$(A - \lambda i_4)^3 = \begin{pmatrix} -2 & 2 & 3 & -2 \\ -6 & 6 & 9 & -6 \\ 4 & -4 & -6 & 4 \\ 2 & -2 & -3 & 2 \end{pmatrix}$$

and the associated null space has a basis

consisting of
$$\left\{ \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$
. Hence, all rank 3 generalized eigenvectors are

in this null space (as well as the rank 2 and rank 1 generalized eigenvectors).

4. $(A - \lambda I_4)^4 = 0_{4\times 4}$ and the associated null space has a standard basis consisting of $\begin{cases} 1\\0\\0\\0 \end{cases}, \begin{pmatrix}0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix}0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix}0\\0\\1\\0 \end{pmatrix} \end{cases}$. Hence, all rank 4 generalized eigenvectors are in this

null space (as well as the rank 3, rank 2 and rank 1 generalized eigenvectors). One can show that

$$\left\{ \begin{pmatrix} -1 \\ -3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

is a linearly independent set of generalized eigenvectors (one of rank 1, one of rank 2, one of rank 3, and one of rank 4).

To construct the matrix M so that $J = M^{-1} A M$ is in *Jordan canonical form* we are in general not interested in any set of linearly independent generalized eigenvectors but in a set of linearly independent generalized eigenvectors related in a particular manner.

Example - Continued

Let
$$A = \begin{pmatrix} 4 & -4 & -11 & 11 \\ 7 & -16 & -48 & 46 \\ -6 & 16 & 43 & -38 \\ -3 & 9 & 23 & -19 \end{pmatrix}$$
. Then the eigenvalue of $\lambda = 3$ has algebraic

multiplicity 4 and geometric multiplicity 1. The vector
$$x_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 is a generalized eigenvector

of rank 4. We now construct a *chain* using x_4 as a seed:

$$x_3 = (A - 3I_4) x_4 = \begin{pmatrix} 1 \\ 7 \\ -6 \\ -3 \end{pmatrix}$$

$$x_{2} = (A - 3I_{4}) x_{3} = (A - 3I_{4})^{2} x_{4} = \begin{pmatrix} 6 \\ 24 \\ -20 \\ -12 \end{pmatrix}$$

$$x_{1} = (A - 3I_{4}) x_{2} = (A - 3I_{4})^{3} x_{4} = \begin{pmatrix} -2 \\ -6 \\ 4 \\ 2 \end{pmatrix} (= \text{ eigenvector since } x_{1} = 2 \begin{pmatrix} -1 \\ -3 \\ 2 \\ 1 \end{pmatrix}).$$

The set $\{x_1, x_2, x_3, x_4\}$ is a linearly independent set of generalized eigenvectors for $\lambda = 3$ (one of rank 1, one of rank 2, one of rank 3, and one of rank 4). Define a matrix **P** by

$$P = \left(x_1 \ x_2 \ x_3 \ x_4 \right) = \left(\begin{array}{cccc} -2 & 6 & 1 & 1 \\ -6 & 24 & 7 & 0 \\ 4 & -20 & -6 & 0 \\ 2 & -12 & -3 & 0 \end{array} \right)$$

Then

$$P^{-1} A P = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

We conclude that $A = \begin{pmatrix} 4 & -4 & -11 & 11 \\ 7 & -16 & -48 & 46 \\ -6 & 16 & 43 & -38 \\ -3 & 9 & 23 & -19 \end{pmatrix}$ is similar to matrix in Jordan canonical

form.

Example (algebraic multiplicity 3, geometric multiplicity 1)

Let
$$A = \begin{pmatrix} -1 & -18 & -7 \\ 1 & -13 & -4 \\ -1 & 25 & 8 \end{pmatrix}$$
. Then $Det[A - \lambda I_3] = -(\lambda + 2)^3$ and the null space for

$$A + 2I_3 = \begin{pmatrix} -3 & -18 & -7 \\ 1 & -15 & -4 \\ -1 & 25 & 6 \end{pmatrix} \text{ is given by } \left(\begin{pmatrix} -5 \\ -3 \\ 7 \end{pmatrix} \right). \text{ Thus, } \lambda = -2 \text{ has algebraic}$$

multiplicity of 3 and geometric multiplicity of 1. We find that the null space for

$$(A + 2I_3)^2 = \begin{pmatrix} -10 & 5 & -5 \\ -6 & 3 & -3 \\ 14 & -7 & 7 \end{pmatrix}$$

is given by $\left(\begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right)$ and the null space for

$$(A + 2I_3)^3 = 0_{3\times 3}$$

has the standard basis of $\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \end{pmatrix}$. So, set

$$x_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

$$x_2 = (A + 2I_3) x_3 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
, and

$$x_1 = (A + 2I_3) x_2 = \begin{pmatrix} -10 \\ -6 \\ 14 \end{pmatrix}$$
 (= eigenvector since $x_1 = 2 \begin{pmatrix} -5 \\ -3 \\ 7 \end{pmatrix}$).

Define

$$P = \left(x_1 \ x_2 \ x_3 \right) = \left(\begin{array}{ccc} -10 & 1 & 1 \\ -6 & 1 & 0 \\ 14 & -1 & 0 \end{array} \right).$$

We then see that

$$P^{-1} A P = \begin{pmatrix} -2 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{pmatrix}$$

Hence, A is similar to a matrix in Jordan canonical form.

<u>Example</u>

Let
$$A = \begin{pmatrix} 4 & -4 & -11 & 11 \\ 3 & -12 & -42 & 42 \\ -2 & 12 & 37 & -34 \\ -1 & 7 & 20 & -17 \end{pmatrix}$$
. Then $Det[A - \lambda I_4] = (\lambda - 3)^4$ and the null space

of
$$A - 3I_4$$
 is given by $\begin{pmatrix} 1 \\ 3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -3 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix}$. Thus, $\lambda = 3$ has algebraic multiplicity 4 and

geometric multiplicity 2. Here

$$N((A - 3I_{4})^{2}) = \left(\begin{pmatrix} 0 \\ 3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right)$$

and

$$N((A - 3I_4)^3) = N(0_{4\times 4}) = \left(\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right).$$

Observe here that we cannot arbitrarily choose x_3 from among

$$\left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

as $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ has rank 2 rather than rank three (why?). Set

$$x_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix},$$

$$x_2 = (A - 3I_3) x_3 = \begin{pmatrix} 11 \\ 42 \\ -34 \\ -20 \end{pmatrix}$$
, and

$$x_{1} = (A + 3I_{4}) x_{2} = \begin{pmatrix} -3 \\ -9 \\ 6 \\ 3 \end{pmatrix} (= \text{eigenvector as } x_{1} = 3 \begin{pmatrix} 1 \\ 3 \\ 0 \\ 1 \end{pmatrix} + 6 \begin{pmatrix} -1 \\ -3 \\ 1 \\ 0 \end{pmatrix}).$$

Unfortunately, at this point we only have three linearly independent generalized eigenvectors for $\lambda = 3$. So, we seek another chain of generalized eigenvectors of length one. That is, we seek

an eigenvector (why?) that is linearly independent from $x_1, x_2, \& x_3$. Set $y_1 = \begin{pmatrix} -1 \\ -3 \\ 1 \\ 0 \end{pmatrix}$. Now,

since $Det[(x_1 x_2 x_3 y_1)] = -27 \neq 0$, the matrix **P** given by

$$P = \left(x_1 \ x_2 \ x_3 \ y_1 \right) = \left(\begin{array}{cccc} -3 & 11 & 0 & -1 \\ -9 & 42 & 0 & -3 \\ 6 & -34 & 0 & 1 \\ 3 & -20 & 1 & 0 \end{array} \right)$$

is invertible and

$$P^{-1} A P = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Again, we see that A is similar to a matrix in Jordan canonical form.

Example

Let
$$A = \begin{pmatrix} 4 & -1 & -2 & 2 \\ 7 & -4 & -12 & 10 \\ -6 & 6 & 13 & -8 \\ -3 & 3 & 5 & -1 \end{pmatrix}$$
. Then $Det[A - \lambda I_4] = (\lambda - 3)^4$ and the null space of

$$A - 3I_4$$
 is given by $\begin{pmatrix} 2 \\ 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix}$. Thus, $\lambda = 3$ has algebraic multiplicity 4 and

geometric multiplicity 2. Here

$$N((A - 3I_{4})^{2}) = N(0_{4\times 4}) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix}.$$

So, we set

$$x_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

and

$$x_1 = (A - 3I_4) x_2 = \begin{pmatrix} 1 \\ 7 \\ -6 \\ -3 \end{pmatrix}.$$

As before
$$x_1 = (-3) \begin{pmatrix} 2 \\ 0 \\ 2 \\ 1 \end{pmatrix} + 7 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
 and x_1 is an eigenvector associated with $\lambda = 3$.

Our set of generalized eigenvectors has cardinality two and so we seek either a single chain of

length two or two chains of length one to bring the total number of generalized eigenvectors up to four. We try

$$y_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

We note that
$$y_2 \neq \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
 for in this case $x_1 + y_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ which is an eigenvector. Why is this

problematic?

Set

$$y_1 = (A - 3I_4) y_2 = \begin{pmatrix} 2 \\ 10 \\ -8 \\ -4 \end{pmatrix}$$

and observe that

$$y_1 = (-4) \begin{pmatrix} 2 \\ 0 \\ 2 \\ 1 \end{pmatrix} + 10 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
 (= eigenvector).

Here we set

$$P = \left(\begin{array}{ccc} y_1 & y_2 & x_1 & x_2 \end{array} \right) = \left(\begin{array}{cccc} 2 & 0 & 1 & 1 \\ 10 & 0 & 7 & 0 \\ -8 & 0 & -6 & 0 \\ -4 & 1 & -3 & 0 \end{array} \right)$$

and see that

$$P^{-1} A P = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Yet again we find that A is similar to a matrix in Jordan canonical form.

Example - Characteristic Polynomial of $Det[A - \lambda I_4] = (\lambda - 3)^4$

1. The matrix
$$A = \begin{pmatrix} 4 & -4 & -11 & 11 \\ 7 & -16 & -48 & 46 \\ -6 & 16 & 43 & -38 \\ -3 & 9 & 23 & -19 \end{pmatrix}$$
 has characteristic polynomial of

 $Det[A - \lambda I_4] = (\lambda - 3)^4$. The eigenvalue $\lambda = 3$ has algebraic multiplicity 4 and

geometric multiplicity 1. The matrix *A* has Jordan canonical form of $\begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}$.

2. The matrix
$$A = \begin{pmatrix} 4 & -4 & -11 & 11 \\ 3 & -12 & -42 & 42 \\ -2 & 12 & 37 & -34 \\ -1 & 7 & 20 & -17 \end{pmatrix}$$
 has characteristic polynomial of

 $Det[A - \lambda I_4] = (\lambda - 3)^4$. The eigenvalue $\lambda = 3$ has algebraic multiplicity 4 and

geometric multiplicity 2. The matrix *A* has Jordan canonical form of $\begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$.

3. The matrix
$$A = \begin{pmatrix} 4 & -1 & -2 & 2 \\ 7 & -4 & -12 & 10 \\ -6 & 6 & 13 & -8 \\ -3 & 3 & 5 & -1 \end{pmatrix}$$
 has characteristic polynomial of

 $Det[A - \lambda I_4] = (\lambda - 3)^4$. The eigenvalue $\lambda = 3$ has algebraic multiplicity 4 and

	3	1	0	0)	١
geometric multiplicity 2. The matrix <i>A</i> has Jordan canonical form of	0	3	0	0	
geometric multiplicity 2. The matrix A has jordan canonical form of	0	0	3	1	•
	0	0	0	3))

Example - Multiple eigenvalues. (Details missing!!)

1. Let
$$A = \begin{pmatrix} 2 & 5 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}$$
. Since A is upper triangular, we see that the

eigenvalues are -1 & 2. For $\lambda = 2$ we find that the null space for $A - 2I_5$ is given

by
$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
, the null space for $(A - 2I_5)^2$ is given by $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ and the null
space for $(A - 2I_5)^3 \neq 0_5$ is also given by $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. This sequence has

stalled and nothing new will be added. (Why? Btw, what is the algebraic multiplicity of

$$\lambda = 2$$
?) We take $x_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ (do we really have a choice here?) and then

$$x_2 = (A - 2I_5) x_2 = \begin{pmatrix} 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

For $\lambda = -1$ we find that the null space for $A + I_5$ is given by

$$\left(\begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right).$$
 Since the algebra multiplicity equals the geometric

multiplicity, we are done with respect to $\lambda = -1$. (Why?)

Set

	5	0	-1	0	0)	
	0	1	0	0	0	
<i>P</i> =	0	0	0	0	1	
	0	0	0	1	0	
<i>P</i> =	0	0	3	0	0)	

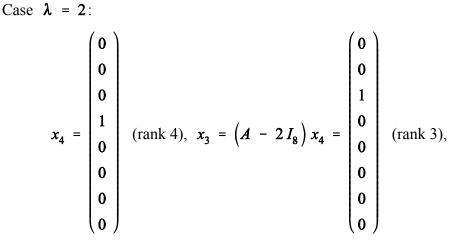
7	Γŀ	nen	
		1011	

(5	0	-1	0	0	-1	(2	5	0	0	1 0 0 0 -1	5	0	-1	0	0)
0	1	0	0	0		0	2	0	0	0	0	1	0	0	0
0	0	0	0	1		0	0	-1	0	0	0	0	0	0	1
0	0	0	1	0		0	0	0	-1	0	0	0	0	1	0
(0	0	3	0	0)		0)	0	0	0	-1)	0	0	3	0	0)

$$= \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}.$$

2. Let
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 \\ \end{pmatrix}$$
. As \mathbf{A} is upper triangular we see that

 $\lambda = 2$ is an eigenvalue with algebraic multiplicity 6 and $\lambda = 3$ is an eigenvalue with algebraic multiplicity 2.



$$x_{2} = (A - 2I_{8}) x_{3} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} (rank 2), x_{1} = (A - 2I_{8}) x_{2} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} (rank 1)$$

Set
$$y_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -2 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
 (rank 2), $y_1 = (A - 2I_8)y_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ (rank 1)

Case
$$\lambda = 3$$
:

Set
$$z_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
 (rank 2), $z_1 = (A - 2I_8) z_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ (rank 1)

Now, if $P = (x_1 x_2 x_3 x_4 y_1 y_2 z_1 z_2)$, then

$$P^{-1} A P = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \end{pmatrix}.$$