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The Fourth Dimension, Reached through Tangency

For all practical purposes, we can readily visualize three dimensions in our existence, often called length, width and height.  A problem arises when an attempt to describe a fourth spatial dimension is undergone.  It is much more practical to use mathematical concepts to reach this fourth dimension, rather than trying to stare into space until you can find it.  In mathematical terms, one dimension can be reached through terms of tangency – these tangents can be lines, planes, or higher dimensions, like a hyper-plane, the tangent to the hyper-sphere.  It can be logically inferred from the tangent to a sphere, which is a plane (the mathematics of this will be showed later) that a sphere existing in four dimensions must have, at any one of its points, a tangent hyper-plane which contacts the hyper-sphere at only point and whose intersection creates a 90 degree angle with the radius of the hyper-sphere, much like tangent plane creates a 90 degree angle with the radius of the sphere.


There are many practical ways of taking the tangency concept and extending it from lower dimensions into the upper ones, those that cannot be visualized easily with the three spatial dimensions that are available to us.  To start, take a simple equation of any object in two dimensions, with only “x” and “y” coordinates:

y = 4x4 + 5/3x½.  This equation defines some object completely in terms of a dependent variable, y, and an independent variable, x.  The tangent to this curve will be of one dimension, namely a line.  As shown by the maple examples provided, any curve in two dimensions contains a tangent line of one dimension existing at every point (with few exceptions) on the curve.  The slope of this tangent line is provided by the derivative of the equation of the curve, with the x-coordinate of the point inserted into the x value.  


This premise can easily be extended to the next set of dimensions, a three dimensional object with a two dimensional tangent plane.  Consider any equation for a three dimensional solid in the generic form Ax2 + By2 + Cz2 = D.  This equation can describe any number of solids, but when A=B=C, this solid is a perfect sphere, centered at the origin, with a radius of radical D units.  Thinking logically, a sphere perfectly oriented at the origin should have 6 easily determinable tangent planes at the six polar points, (x,0,0) (-x,0,0) (y,0,0), (-y,0,0), (z,0,0) and (-z,0,0) where the variable is the length of the sphere’s radius.  The tangent planes that contain each point, and which are by definition tangent (perpendicular to the radius) may be defined solely by one coordinate.  Thus, the tangent plane extending through point (1,0,0) and which is tangent to the circle of equation  x2 + y2 + z2 = 1 will have the equation x=1.  This determination of the tangent to a point on a three dimensional solid required no derivative use or equations, just logical thinking.  There are, however, actual equations and uses of the derivatives that may be employed when looking for a tangent plane to a three dimensional solid.  For any equation of the form Ax^2 + By^2 +Cz^2 = D, there lies a tangent plane to any point (x1,y1,z1) on the solid.  To find this plane’s equation, it is necessary to calculate the partial derivatives of each variable and find the “partial slopes” (often symbolized with in upside down delta) for the point in question.  We shall call these partial slopes xI, yJ, and zK for the time being.  Once the partials are calculated, you must input a normal (perpendicular vector) into the equation.  Luckily the point itself is a normal to the tangent plane, so its coordinates shall suffice.  An example of this entire process is show below:
Sphere with equation x2 + y2 + z2 = 6 at the point (-1,1,2).  The partials for each of the variables are 2x, 2y, and 2z respectfully, and multiplying them by the point gives you -2i +2j +4k.  Finally, taking the point (-1,1,2) and plugging it into the equation for the plane, you get -2(x+1) +2(y-1) +4(z-2) = 0, or in simpler terms -x +y +2z = 6. 


The maple graph provided shows a normal sphere with radius 1 centered at the origin and a plane tangent to it.  The cross sections in the animation show the projection of slices of the sphere and plane into two dimensions.  It makes sense that since the tangent plane only touches the sphere at one point and that a sphere projected onto two dimensions will appear as a growing and receding circle that the cross sections will only have the line representing the plane touching the circle representing the sphere at one point.  This theory can be easily extended, as will be demonstrated next. 

This is a great stepping stone towards projecting the tangent concept into higher dimensions, because mathematically we already have a method for calculating the tangent plane of any dimensions to any solid of the next higher dimension.  For practical purposes the example discussed next and shown in Pov-ray is for a simple hypersphere and a tangent plane parallel with one of the coordinate axes.  Following the same model of a sphere and its tangent plane being projected into two dimensions, a hypersphere and its “hyper-plane,” while they cannot be directly visualized in our world, can be seen as a projection into three dimensions.  A hypersphere passing through the third dimension would exist as initially a single point, but would rapidly expand into larger and larger spheres until the circumference of the slice is the circumference of the hypersphere.  It would then disappear just as quickly into nothing.  The tangent hyperplane would appear to be a normal plane moving about a single coordinate axis until it touched the moving sphere at a single instance.  The two would then diverge and not touch again.  To illustrate this, I have composed a Pov-Ray file in which two tangent planes, both moving, surround a sphere which grows and shrinks, touching both planes only once.

The animation of the sphere was pretty simple.  To create a sphere that started as a point and ended that way, the radius had to change with time, just as it should if the sphere was a three dimensional cross section of a hypersphere.  The equation of a four dimensional sphere should simply be an extension of a three dimensional sphere, with an additional coordinate; w2 + x 2 + y 2 + z 2 = r2.  In the pov-ray example, the w variable is represented by “clock” and goes from -1 to 1.  For a plane tangent to (sqr (2)/2, sqr (2)/2, 0, 0), we use this as the normal and the equation of the tangent plane becomes sqr(2)/2 w + sqr(2)/2 x =1.  Solving this equation for x, we finally get:

x = 1 - sqr(2)(w).  Since w is going to be the clock value to show the progression of the tangent plane towards the sphere, we want to use the parameters -1 to 1, so that at the very middle frame the clock value is 0 and the tangent plane’s equation is x =1.  At this moment, the tangent plane has reached the expanding sphere and is touching it exactly at a single point.

The tangent plane is not the only object moving if a hypersphere and its tangent hyperplane are cut in sections along the w axis.  If we take the w-coordinate to represent the radius of the sphere in three dimensions, the slicing of the hypersphere can be represented as a cross section diagramed below:
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Since the radius of the hypersphere is 1, and the slicing can be represented in terms of any variable (such as clock) the radius of the contour spheres is the last leg of the right triangle created by these three sides.  Solving for that side, you get the square root of (1-k2), where k represents the contour.  The parameters for k can only go from -1 to 1, for if it is any larger the radius becomes the square root of a negative number.  Thus the equation for the radius of the hypersphere has been calibrated.  Looking at the equation and the range of k, it is easy to see that at either extreme, -1 and 1, the radius becomes 0, corresponding to the instances where the hypersphere is just out of range of our three dimensions.  Once it enters visible space, it grows rapidly until k = 0 and the radius becomes 1.  Immediately after this the radius shrinks just as rapidly as it grew.


Thus, a tangent plane attached to a point on a three dimensional sphere can be analogous to a tangent “hyperplane” attached to a point on a four dimensional hypersphere, aiding in the visual representation of a dimension that can not be otherwise easily seen.

