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Imagining the Hypercube: the journey from the point to the four-dimensional cube

How can we, being incapable of perceiving anything beyond our three-dimensional awareness, imagine a hypercube?  This question was addressed in 1884 in Abbot’s Flatland through a Sphere’s attempts to prove and explain the existence of a third dimension to a Square who is only aware of two.  Just as A. Square cannot on his own conceive of our three-dimensional Space, because, as the Sphere tells him, the third dimension is in “a direction in which you cannot look, because you have no eye in your side [insides]” (56), we are incapable of fully visualizing a fourth dimension.  We are able, however, to conceptualize it and to determine the composition of a four-dimensional cube.


Flatland offers a model for imagining and understanding objects beyond our physical ability to see.  Having been taught by the Sphere to use analogy to understand a three-dimensional cube, A. Square now assumes an infinite number of possible spatial dimensions.    He desires to see “the blessed region of the Fourth Dimension, where I shall look down with him once more upon this land of Three Dimensions, and see the insides of every three-dimensional” object (71).  The Sphere, who has never considered extending his analogy beyond his own three-dimensional world, scoffs at this idea.  Ignoring the difficulty which Flatlanders confront when thinking of three dimensions, he declares, “There is no such land.  The very idea of it is utterly inconceivable” (71).   Still convinced that his people and his Space represent the highest-dimensional reality and the pinnacle of perception, he refuses to consider something more.  We, however, can use the Sphere’s analogies of the lower dimensions to try to understand the fourth.   This project attempts to animate the Sphere’s description of the analogues of a cube in dimensions zero through three—the progression from a point, to a line segment, to a square, to a cube.  Like A. Square, however, we will extend this pattern to the four-dimensional cube.

The Sphere begins with a zero-dimensional point moving to form a line: “if a Point moves Northward, and leaves a luminous wake,” the wake creates “a straight Line” with two extremities (60). This is easily understood by A. Square, as is the idea of a moving line forming a square such as himself: “Now conceive the Northward straight Line moving parallel to itself, East and West, so that every point in it leaves behind it the wake of a straight Line.”  If the line “moves through a distance equal to the original straight Line”, a square is formed. (60).  The next step in the progression, the cube, requires a third dimension completely alien to a Flatlander.  The line must move “upward” or “downward” completely out of Flatland, because “every point is to pass upwards through Space in such a way that no Point shall pass through the position previously occupied by any other Point” (60).  This is why we, and the Sphere, cannot picture the creation of a hypercube from a moving cube; we cannot imagine a fourth direction that would allow the cube to move without passing through its original position.

Mathematics, however, allow A. Square to figure out certain aspects of a cube’s composition.  The first pattern he is taught is the pattern of vertices, or what the Sphere calls terminal points.  A single point “has only one terminal Point.  One Point produces a Line with two terminal Points.  One Line produces a Square with four terminal Points” (61).  A. Square recognizes that this pattern—1, 2, 4—is a geometrical progression, the next term of which would be 8.  Hence, he understands that a cube would have 8 terminal points (61).  Similarly, the Sphere guides him through a pattern for the number of “sides”, or bounding figures, in each dimension.  “The side of anything is always, if I may say so, one Dimension behind the thing.  Consequently, as there is no Dimension behind a Point, a Point has 0 sides; a Line, if I may say, has 2 sides (for the Points of a Line may be called by courtesy, its sides); a Square has 4 sides; 0, 2, 4” (61).  A. Square sees the arithmetical progression and concludes that a cube would have 6 squares for sides (62).  Unlike the Sphere, A. Square carries the analogy to the fourth dimension and asks to see the “more perfect” object beyond a cube, which we call a hypercube, “with sixteen terminal Extra-solid angles, and Eight solid Cubes for his Perimeter” (74).

We can express these progressions more simply.  For example, the arithmetic progression for the number of boundary figures can be expressed by 2n, where n is the number of dimensions of the cube.  In Banchoff’s Beyond the Third Dimension, the number of vertices found in an n-dimensional cube is given by 2n (71).  He explains this formula and Abbott’s progression simply: “Each time we move a cube to generate a cube in the next higher dimension, the number of vertices doubles.  That is easy to see since we have an initial position and a final position, each with the same number of vertices.” (69).  Banchoff goes further and explains how we can calculate the number of edges in an n-cube.  “If we move a figure in a straight line, then the number of edges in the new figure is twice the original number of edges plus the number of moving vertices.  Thus the number of edges in a four-cube is 2 times 12 plus 8 for a total of 32” (69).  This pattern is given by n x 2n-1 (71).


We now know the number of vertices, edges, and three-cubes in a hypercube.  Only one type of figure remains before we can try to represent the four-cube: the square.  Is there a formula that will give us the number of squares in a hypercube?  As it turns out, (2+x)n gives the number of elements of each dimension in an n-dimensional cube
.  Substituting four for n, the polynomial can be expanded to give: (2+x)4 = 16 + 32x + 24x2 +8x3 + x4.  This agrees with our earlier calculations of sixteen zero-dimensional vertices, 32 edges, and eight cubes in a hypercube, and also tells us that the number of squares, represented by x2, is 24.  Knowing these elements, we can now animate the path from a single point to a hypercube.


The animation that accompanies this text was created by rendering images in POV-Ray 3.6
 using a clock function and compiling them with ImageToAVI 1.0.  In POV-Ray, the x-axis is horizontal, the y-axis is vertical, and the z-axis appears to go into the screen and out towards the viewer.  The first part of the video was made with the file hypercubeProject.pov.  The animation starts with a brown dot located at (-1,-1, 0).  It is colored with a wood grain edited to be transparent so that, in later parts of the animation, outer faces will not obstruct our view of the elements of the n-cube which lie behind them.  Although the dot we see is really a small two-dimensional rectangle, it represents a zero-dimensional point.  This point extends towards the right of the screen, leaving a wake as described in Flatland.  The left side of the rectangle is stationary while the right side is extended to the right by increasing the value of the x-coordinate of its two vertices until the “point” reaches (1,-1,0), resulting in a very narrow rectangle that represents a one-dimensional line segment between these two points.  Next, the upper two vertices of the square move up until the y-coordinate for both is 1, resulting in a square that is centered at the origin and has sides with a length of 2 units.  Hence, a line has moved parallel to itself a distance equal to its length, resulting in a square as described in Flatland.  Its points are given by (1, 1) or, in the three-dimensional language of POV-Ray, (1, 1, ).

In the next stage of the animation, the square rotates -230 degrees along the y-axis.  Then, two copies of this square move apart from each other until the distance between them is two units, the same as their side lengths.  Instead of leaving a wake, however, the two faces remain separate.  The other four faces are added one at a time, highlighting the six square faces, or boundary figures, of the three-cube.  The viewer can also see how the squares share edges and vertices so that, at the end, there are eight vertices and twelve edges.  The first two squares were kept in their rotated position because a cube with coordinates (1, 1, 1)  would be seen as only a single square, the front square (and possibly a bit of back, since the cube’s hollow, semi-transparent nature would allow a view of the opposite square, which would appear smaller due its greater distance from the camera).   Hence, the coordinates (1, 1, ) no longer apply to any of the squares composing this slanted but more illustrative cube.  The two squares which moved apart from the center contain all eight vertices of the cube, so to define the other six squares, one need only find the coordinates of the vertices of these squares in their new, rotated position.   
When a ray lying on the x-axis is rotated counterclockwise by α degrees, the point on the ray that intersects the unit circle is given by (cosα, sinα) (Lee 13).  This two-dimensional relationship can be used by essentially ignoring the y-axis; because the square rotated around the y-axis, the y value remains the same for the original square and its rotated and translated copies.  The x- and z-coordinates are now treated as the traditional x and y of two dimensions.  The orientation of the new set of x and y, however, will affect which direction is positive for each axis and what constitutes a counterclockwise rotation, and hence whether α must be -230 (50) or +230 degrees.  We can say that the original vertices lie on the unit circle by imagining that the origin is not at (0,0,0) but is instead at the midpoint of each side of the square.  For example, for the top segment of the square, the origin would be at (0,1,0), so that each vertex—(1,1,0) and (-1,1,0)—is one unit away from the “origin.”  Furthermore, since the squares were translated one unit away from the origin along the x-axis, the x-coordinate of each new vertex must be increased or decreased by one unit after rotation.  For example, the original vertex (-1, 1, 0) is now two vertices, one for each square: (cos(50)1, 1, sin(50)).

Once the cube has been completed, the next step is to build a hypercube.  Since we cannot see in four dimensions or move a cube parallel to itself in a fourth, mutually perpendicular direction, we must find a way to represent the hypercube in three dimensions.  One way to do this is through perspective views.  Perspective can be used to represent a three-cube’s frame in two-dimensions by showing one square within a larger square and connecting the corresponding vertices (Banchoff 112-113):

[image: image1]
This view clearly shows the eight vertices and twelve edges.  The six squares are also easily seen when one remembers that the larger square is itself one face of the cube and that the four trapezoids are truly squares which appear to be trapezoids because of the vanishing point.  Similarly, the central projection of a four-cube into three-dimensional space will consist of a smaller cube centered within a larger cube, with corresponding vertices connected by edges (Banchoff 115) and the corresponding edges of the two cubes connected by squares.


The first step in creating this central projection of the hypercube is to center a cube within a larger cube.  This is done by making a copy of the first cube and scaling it so that it expands until its side length is four units rather than two.  Next, a frame of edges and vertices is joined with the image of the two cubes.  Yellowish spheres represent the vertices, allowing us to see that each cube contributes eight of the hypercube’s sixteen vertices.  The grayish cylinders represent edges.  Our earlier calculations tell us that there should be 32 edges.  Each cube contributes its twelve edges, for a total of 24, and the eight pairs of corresponding vertices of the two cubes are connected to form the other eight.  Pausing allows the viewer to confirm that all edges and vertices are present in this central projection.  The earlier rotation prevents items in the front from blocking those towards the back.

In the next phase of the video, the hypercube seems to darken because all squares connecting the two cubes have been filled in.  What would be perfect squares in four-space appear as trapezoids (in four dimensions, the two cubes we connect to each other would be identical in size and the resulting hypercube would be convex, not a cube-within-a-cube).  Twelve of these seeming trapezoids have been inserted, connecting each pair of corresponding edges of the two centered cubes.  For example, one trapezoid is seen connecting the top, front edge of the inner cube with the top, front edge of the outer cube.  Earlier we determined that a hypercube should have 24 squares.  The other twelve come from the two centered cubes.


In the last part of the animation, created by the file ProjectPart2.pov, the hypercube is rotated.  This allows the viewer to better appreciate the symmetry of the hypercube.  It also allows us to better visualize the eight cubes which bound a hypercube in four-dimensional space.  Two of the cubes, the centered inner and outer cubes, are obvious.  The other cubes are less clear because, in this projection, each cube is formed by two squares of unequal size which are joined by four trapezoids.  These six cubes are formed by connecting each face of the smaller cube with the corresponding face of the outer cube, along with the four trapezoids (truly squares) that connect their corresponding edges.  Hence, although the figures have been distorted and we cannot truly see how a four-cube looks in four-space, the animation allows us to simultaneously see all of the composing elements of the hypercube: 16 vertices, 32 edges, 24 squares, 8 cubes, and 1 hypercube.
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� POV-Ray programming was done with the aid of Dr. Carl Lee’s HON 301 lectures, examples and class notes, as well as POV-Ray help files.
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