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Honors 301 Project


Ruled Surfaces

It is not often that one thinks of straight lines in conjunction with highly-curved surfaces such as paraboloids.   These solid surfaces are seemingly devoid of straight lines, and their smooth exterior would lead one to believe that no two points on the edges could be connected with only a straight line.  But for a series of curved surfaces, not only can these lines be found but the entire surface can be created from them.  A surface that can be swept out by lines is known as a ruled surface, and a series of ruled surfaces is the basis for this project.  


An obvious but not so curved example of a ruled surface is a plane.  A plane in three-dimensional space, or similarly a line in 2-dimensional space, can be constructed with a series of lines that need only vary in one coordinate.  This example is the most elementary but necessary for the understanding of the ruled surface.  The plane is known as a minimal surface as well because it has a mean curvature of zero. It is also known as a doubly-ruled surface because it can be constructed from lines starting at either edge. If the plane is rectangular, these intersecting lines will be perpendicular thereby form a grid pattern.  With either one set of lines or both, as the number of lines grows to infinity over a given area, with the width and height of each line tending to the infinitesimal, the pattern approaches a seamless, uniform plane.  
What is probably the next easiest ruled surface to visualize is the helicoid or helix.  This curved surface is made up of lines that share an edge with a central axis, and the lines are rotated around this axis as they move up or down along this origin, much like a spiral staircase.  This can be imagined as a spiral staircase with thousands of tiny steps for only a few feet of incline.   Eventually these steps become so infinitesimally small that only a curved surface is left.  An example of a double helicoid designed in POV-RAY is shown below.  
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It is important to note that although the helicoid, which resembles the threads in a screw, look as though it contains a surface of constant downward or upward slope depending on direction, the lines that create it are all perpendicular to the central axis and do not individually contribute to this sloping effect.   The helicoid can be plotted out using the follow parametric equations:  x = ucos(v); y = usin(v); z = cv.  
The above representation was created using cylinders so that all points on this three-dimensional surface were not necessary, only the central axis and outer edge were needed.  For the central coordinate of all lines, the x and y component remained a constant zero and the z component was gradually decreased from the apex to the bottom through a specified height.  The outer coordinate was plotted using the parametric equations with a constant radius for the helicoids as u, with the gold spiral using positive cos and sin values, and the copper spiral using the negative values of these calculations.  A transparent cylinder was used to encase the helicoids to demonstrate the constant radius of the system.  An animation was made showing the helicoids being swept out by a single line.  This was done by creating a new image every time a new line was added.  Although more efficient ways exist, a while loop was used to recreate a new helicoid after each clock cycle, and thus by the end of the rendering process the majority of the image had to be recreate for each additional line.  
The next surface is somewhat similar in that it can be enclosed in a cylinder, but the connections of the lines are completely different.  If all of the lines were drawn from the top circle of the cylinder, to the bottom circle, in a skewed and angled fashion, then a hyperboloid is created.  Notice that this is the same as twisting a cylinder that has lines connected at the top and bottom parallel to the z-axis.  This hyperboloid, called so because a perfect hyperbola can be seen from all directions rotated around the z-axis, has been created solely of ruled edges.  As a byproduct due to the properties of hyperboloids, perfect circles of varying sizes are formed from the top to bottom, with the smallest radius at the center.  
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This shape is constructed using the parametric equations: 
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.  Again only certain points on this surface are needed to draw the necessary lines, and these are the coordinates at the top and bottom of the surface.   Keeping z at a constant height both positive and negative, the x and y components of the lines were found and connected.  The plus or minus sign in the equation indicates that two sets of lines can be drawn, making this another doubly-ruled surface; both sets were used in the three-dimensional representation.  An animation was created showing the construction of the hyperboloid using an increasing number of line segments.  Starting with only 2 lines for each intersecting set, a three-dimensional surface is impossible to discern.  But with each new image in the animation the number of lines is doubled until 1024 lines exist.  At this point it is nearing impossible to discern the lines, and the hyperboloid is in clear view.  

The last of the simple surfaces created in this project is the hyperbolic paraboloid, also known as the saddle.  Another doubly-ruled surface is created from skewed lines that appear parallel from above.  The four corners of this surface are vertices of a cube that can enclose the paraboloid.  The lines are drawn to connect each point to its nearest diagonal counterpart.  So the top-back-left corner connects to the bottom-front-left corner, and those in between each corner are connected.  
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Again a set of parametric equations can be given for the surface as follows:  x = u; y = v; z = uv.  For the ends of each line, which is what is necessary for this project, one notices that one component of the three is always constant.  While x is a constant +u, for example, y ranges from –u to +u, and z ranges from +u to –u.  A similar set of ranges is seen for the other three sets of line coordinates, one more set for constant x and two more for constant y.  This is utilized to find the coordinates for the two sets of intersecting cylinders over an equally spaced range between the cubic vertices.  Only 32 line segments from each line set were needed to bring out this curved surface.  An animation was created that rotates the paraboloid around the z-axis.  The different angles show off the lines involved and clearly demonstrates the saddle nickname that the surface has.  From the bottom side of the surface the origin resembles a maximum, whereas from the top side, the origin resembles a minimum.  This saddle-point at the origin is neither a maximum nor a minimum for the surface and makes finding maxima and minima difficult through ordinary calculus.  
The cylindroid, also known as Plucker’s conoid, is a difficult surface to imagine on its own.  Best described as a ribbon whose inner edges are touching and then all bent in half, the cylindroid is even more difficult to visualize as a ruled surface due to the added fact that the outer edge is a curved surface.  Luckily, this surface is only singly-ruled and only one set of lines is needed to produce it.  
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The parametric equations for this surface are:
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.  However, for our purposes one set of coordinates has the z-axis as a constant point of origin, thus x and y are zero for one set of ends for all lines, and the z component varies according to the parametric equation.  The outer coordinates vary by cos and sin over a fixed radius.  This surface is interesting because all 3 components of the outer points of the lines are varying trigonometrically.  If the cylindroid is flipped vertically by 180 degrees, and then horizontally by 90 degrees, it would return to the same orientation.  A kind of chiral symmetry is present due to its dual-trigonometric properties.   All of this seems even more extraordinary due to the fact that this can be constructed using nothing but lines and a simple formula.    Another rotating animation was produced for this image to be able to visualize the uncommon surface as well as notice the use of the ruled edges.  Five hundred and twelve line segments were used to create the surface.  

Lastly, a surface that is a favorite among mathematicians, the Mobius strip was created from lines.  The surface of the strip is a nonorientable surface such that as you traverse the surface, when you get to the opposite side you are still going in the same direction.  This surface comes with the most complicated parametric equations of the six so far, and the equations are given as follows: 
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.  Here R is equal to the theoretical radius of the loop, s is equal to the width of the strip, and t varies from 0 to 2π.  There is no common axis to place all of the lines’ origins, but the variable s will be the key.  The two coordinates for each line are the same except for a change in the s value according to the width that is desired.  In the case below, s = 1 for one set of coordinates and s = 0.5 for the other.  This method was run through a range of t = 0 ( 4 π to create the double loop. 
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As with the cylindroid, all three of the Mobius strip components vary trigonometrically.  This causes the components to start at the origin, go out to their minimum value, climb to their maximum value, and then return to the origin.  The orientation that the strip follows manipulates the three components to create the bizarre surface above.  


Whether you are dealing with a plane or a paraboloid or anything in between, it has been shown that these ruled surfaces can be created using only straight lines and appropriate formulas.  The creation of the images and animations with POV-RAY not only gave a clear demonstration of the ideas and math behind these surfaces, but it was also useful in learning to manipulate the formulas involved.  
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