MA 113 — Calculus I Spring 2010
Exam 1 February 9, 2010

Answer all of the questions 1 - 7 and two of the questions 8 - 10. Please indicate which problem
is not to be graded by crossing through its number in the table below.

Additional sheets are available if necessary. No books or notes may be used. Please, turn
off your cell phones and do not wear ear-plugs during the exam. You may use a calculator, but
not one which has symbolic manipulation capabilities. Please:

1. clearly indicate your answer and the reasoning used to arrive at that answer (unsupported’
answers may not receive credit), '

2. give exact answers, rather than decimal approximations to the answer (unless otherwise
stated).

Each question is followed by space to write your answer. Please write your solutions neatly in
the space below the question. You are not expected to write your solution next to the statement
of the question.
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Question | Score | Total
1 8

2 8

3 9
4 8
5 13

6 8
7 11
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10 16
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(1) (a) Solve the equation 3%**5 = 4. Show all steps of the computation and give the
exact answer.
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(b) Express the quantity

1
log, (23 — 2) + 3 logy(z) — log,(5z)

as a single logarithm.
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(2) Consider the functions f(z) = /12 — 2z and g(z) = 2% + 2.
(a) Compute f(g(1)) and g(f(1)). Give exact answers.

0 [ Le30)) = £ = V12=6 = ¢

@ [ 9({(()}:3({_];—/ =<ﬁ-5}1-(-2 ==._/_z._.

(b) Let h be the composite function h(z) = (f o g)(x). Find the domain of h. As usual,
justify your answer by showing your work.
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(3) Consider the function
6x + 3
2z — 1

fle) =
(a) Find the domain of f.
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) Find the inverse function f~!(z) of f(x).
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(4) Let f be a function such that, for all real numbers x near 4,
4 —9< f(z) < 2® —4a + 7.

Argue that il_r& f(z) exists and find its value. As usual, justify each step of your
work.
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(5) Use the limit rules to determine each of the following limits if it exists. If a limit does not
exist, but is 0o or —oo, then clearly indicate that.
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(6) Let f and g be two functions such that the following limits exist
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(7) An apple drops from a tall tree. The apple falls s(¢) = 5t2 meters after ¢ seconds. In the
following problems include units when stating your answers.

(a) Find the average velocity of the apple over the time interval 1 < ¢t < 1.5.

;f;m 5 (s~ 0.5
. 0

iy

(b) Find the average velocity over the time interval [1, ], where t > 1. Simplify your

answer. ~ E
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(c) Use your answer in (b) to find the instantwus velocity of the gapple after 1 second.
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(a) Average velocity over [1, 1.5]is _{2-5

(b) Average velocity over [1, t] is S (¢+() =

[%0)
(c) Instantaneous velocity at time ¢t =1is {0 ¥



Work two of the following three problems. Indicate the problem that is not to be graded
by crossing through its number on the front of the exam.

(8) (a) Define what it means for a function f to be continuous at a. Use complete sentences.

x—Q

((‘D// A bndbon £ combmurmo ob @ f M £L(x) = £l .

Let
cx? +2x -4, ifzr<3,
flz) =1 4, if z =3,
e 12, if z > 3.

For the following problems, always justify your answer!

(b) Find all values for ¢ such that lin% f(z) exists.
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(¢) For which of the values for ¢ found in (b) is the function f continuous at 37
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(d) Find all values for ¢ such that the function f is continuous at 0.
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(9) (a) State the Intermediate Value Theorem. Use complete sentences
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(b) Explain in detail why and how you can use this theorem to show that the equation

6% — 3z% — b5xr =2

has a solution in the interval (1, 2).
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(10) (a) State the definition of the derivative of a function at a point a. Use complete sentences.
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(b) Compute the slope of the secant line through the points (4, f(4)) and (5, f(5)).

o~ 1 (s)-4£(4) 2.
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(c) Compute the slope of the secant line through the points (4, f(4)) and (4+h, f(4+h)),
where h # 0. Simplify your answer.
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(d) Use part (c) to compute f'(4).
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(e) Compute the equation of the tangent line to the graph of f at the point (4, f(4)). Put
your answer in the form y = mz + b.
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