MA 113 Fall 2021

Exam 2 Form A

KEY

Multiple Choice Questions

1 (A) (B) (C) (D) (E)

2 (A) (B) (C) (D) (E)

3 (A) (B) (C) (D) (E)

4 (A) (B) (C) (D) (E)

5 (A) (B) (C) (D) (E)

6 (A) (B) (C) (D) (E)

7 A B C D E

8 (A) (B) (C) (D) (E)

9 (A) (B) (C) (D) (E)

10 (A) (B) (C) (D) (E)

11 (A) (B) (C) (D) (E)

12 (A) (B) (C) (D) (E)

13 (A) (B) (C) (D) (E)

14 (A) (B) (C) (D) (E)

15 A B C D E

16 (A) (B) (C) (D) (E)

SCORE

Multiple					Total
Choice	17	18	19	20	Score
64	9	9	9	9	100

Multiple Choice Questions

1. Find f(3) and f'(3), assuming that the tangent line to y = f(x) at x = 3 has equation y = 4x - 3.

A.
$$f(3) = -3$$
, $f'(3) = 4$

B.
$$f(3) = 3$$
, $f'(3) = 4$

C.
$$f(3) = 4$$
, $f'(3) = -3$

D.
$$f(3) = 9$$
, $f'(3) = 4$

E.
$$f(3) = 15, f'(3) = 4$$

2. Determine coefficients a and b such that $p(x) = x^2 + ax + b$ satisfies p(2) = 9 and p'(2) = 8.

A.
$$a = 0, b = 5$$

B.
$$a = 1/4, b = 4$$

C.
$$a = 4, b = -3$$

D.
$$a = 4, b = 3$$

E.
$$a = 12$$
, $b = -19$

- 3. Find a formula for $\frac{dy}{dx}$ in terms of x and y, where $x^3y + 3xy^3 = 26$.
 - A. $\frac{dy}{dx} = -\frac{x^3 + 9xy^2}{3x^2y + 3y^3}$
 - B. $\frac{dy}{dx} = \frac{3x^2y + 3y^3}{x^3 + 9xy^2}$
 - C. $\frac{dy}{dx} = \frac{x^3 + 9xy^2}{3x^2y + 3y^3}$
 - D. $\frac{dy}{dx} = \frac{26}{3x^2 + 9y^2}$
 - $E. \frac{dy}{dx} = -\frac{3x^2y + 3y^3}{x^3 + 9xy^2}$

- 4. Suppose f(2) = 3 and f'(2) = 5 and let g(x) = f(x)/x. Find g'(2).
 - A. g'(2) = -13/2
 - B. g'(2) = -7/2
 - C. g'(2) = -7/4
 - **D.** g'(2) = 7/4
 - E. g'(2) = 7/2

- 5. Find the slope of the tangent line to the graph of $f(x) = x^2 e^{2x}$ at x = 2
 - A. $4e^2$
 - B. $8e^2$
 - C. $4e^4$
 - D. $8e^{4}$
 - **E.** $12e^4$

- 6. Find the derivative of $g(x) = x^3 \ln(x^2)$.
 - **A.** $g'(x) = 3x^2 \ln(x^2) + 2x^2$
 - B. $g'(x) = 3x^2 \ln(2x)$
 - C. g'(x) = 6x
 - D. $g'(x) = 3x^2 \ln(x^2) + 2x^4$
 - E. $g'(x) = 3x^2 \cdot \frac{1}{2x}$

- 7. Let $f(x) = x^4 + 3x 1$ and let g be the inverse of f. Find g(3) and g'(3).
 - A. g(3) = -1, g'(3) = 3
 - **B.** g(3) = 1, g'(3) = 1/7
 - C. g(3) = 1, g'(3) = 7
 - D. g(3) = 89, g'(3) = 1/111
 - E. g(3) = 89, g'(3) = 111

- 8. Find the equation of the tangent line to $3x^2 + 5y^3 = 8$ at (4, -2).
 - A. $y = -\frac{3}{5}x + \frac{2}{5}$
 - **B.** $y = -\frac{2}{5}x \frac{2}{5}$
 - C. $y = -\frac{1}{5}x \frac{6}{5}$
 - D. $y = \frac{1}{5}x \frac{14}{5}$
 - E. $y = \frac{2}{5}x \frac{18}{5}$

- 9. Let $h(x) = \frac{\cos(x)}{2 + x + x^2}$. What is h'(0)?
 - A. -1/2
 - **B.** -1/4
 - C. 0
 - D. 1/4
 - E. 1/2

- 10. A watermelon is dropped off a tall building so that its height in meters at time t in seconds is $h(t) = -4.9t^2 + 200$. Find the velocity when it hits the ground. Give your answer correctly rounded to one decimal place.
 - A. -62.4 meters per second.
 - **B.** -62.6 meters per second.
 - C. -62.8 meters per second.
 - D. -63 meters per second.
 - E. -63.2 meters per second.

- 11. Find the points c (if any) such that f'(c) does not exist where f(x) = |2x 4|.
 - A. c = -2
 - B. $c = -\frac{1}{2}$
 - C. $c = \frac{1}{2}$
 - **D.** c = 2
 - E. There are no such points for this function.

- 12. Let f and g be two function and let h(x) = f(g(x)). If g(2) = 3, g'(2) = 5, f(2) = 7, f'(2) = 1, f(3) = -1, and f'(3) = -2, what is h'(2)?
 - **A.** -10
 - B. -1
 - C. 3
 - D. 5
 - E. 38

- 13. Find all the values of x where f''(x) = 0 when $f(x) = 3xe^x$.
 - **A.** −2
 - B. -1/2
 - C. 0
 - D. 1/2
 - E. 2

- 14. Find the derivative of $g(x) = \tan(\sin(3x))$.
 - A. $g'(x) = -3\cos(3x)\sec^2(\sin(3x))$
 - B. $g'(x) = \cos(3x)\sec^2(\sin(3x))$
 - C. $g'(x) = \sec^2(3\cos(3x))$
 - **D.** $g'(x) = 3\cos(3x)\sec^2(\sin(3x))$
 - E. $g'(x) = 3\sec^2(\cos(3x))$

- 15. If g(0) = 4 and g'(0) = 2, then find the derivative of $f(x) = e^{xg(x)}$ when x = 0.
 - A. f'(0) = 1/4
 - B. f'(0) = 1/2
 - C. f'(0) = 0
 - D. f'(0) = 2
 - **E.** f'(0) = 4

- 16. Strontium-90 has a half-life of 28 days. A sample has a mass of 100 mg initially. Find the mass remaining after 50 days rounded to two decimal places.
 - A. 8.41 mg
 - B. 28.00 mg
 - **C.** 29.00 mg
 - D. 50.00 mg
 - E. 68.04 mg

Free Response Questions **Show all of your work**

17. (a) Find all points on $y^2 + 2xy + 2x^2 = 8$ with x = 2.

Solution: Setting x = 2 we have the equation $y^2 + 4y + 8 = 8$ or y(y + 4) = 0. The points with x = 2 are the points (2, 0) and (2, -4).

(b) Find dy/dx for $y^2 + 2xy + 2x^2 = 8$

Solution:

$$y^{2} + 2xy + 2x^{2} = 8$$

$$2y\frac{dy}{dx} + \left(2y + 2x\frac{dy}{dx}\right) + 4x = 0$$

$$\frac{dy}{dx}(2y + 2x) = -4x - 2y$$

$$\frac{dy}{dx} = -\frac{2x + y}{x + y}$$

(c) Find the slope of the tangent line to $y^2 + 2xy + 2x^2 = 8$ at each point with x = 2.

Solution: Using the derivative from above we have:

$$x = 2, y = 0: m = \frac{dy}{dx}\Big|_{(x,y)=(2,0)} = -2.$$

$$x = 2, y = -4: m = \frac{dy}{dx}\Big|_{(x,y)=(2,-4)} = 0$$

- 18. Suppose that $A_0 = 1000$ dollars in principal is invested in an account earning 4% interest, compounded continuously. Recall that the value of the account after t years is $A(t) = A_0 e^{rt}$.
 - (a) What is the value of the account after 5 years?

Solution:
$$A = 1000e^{0.04 \times 5} = $1221.40$$

(b) What is the rate of change of the value A(t) at t = 5?

Solution: The rate of change is the derivative at t = 5.

$$A(t)=1000e^{0.04t}$$
 $A'(t)=40e^{0.04t}$
 $A'(5)=40e^{0.2}=48.856$ dollars per year

(c) What is the rate of change of the value A(t) when A(t) = 1500?

Solution: First, find *t* so that A(t) = 1500.

$$A(t) = 1500$$

$$1000e^{0.04t} = 1500$$

$$t = \frac{\ln 1.5}{0.04} = 10.137 \text{ years}$$

$$A'(t) = 40e^{0.04t}$$

$$A'(10.137) = 60 \text{ dollars per year}$$

- 19. Find the derivatives of the following functions
 - (a) $f(x) = \ln(\sin(3x))$

Solution: $f'(x) = \frac{3\cos(3x)}{\sin(3x)}$

(b) $g(x) = \frac{4}{x^3} - \frac{3}{x^2} + \frac{2}{x} + 4$

Solution: $g'(x) = -\frac{12}{x^4} + \frac{6}{x^3} - \frac{2}{x^2}$

(c) $h(x) = 2 \ln \left(\frac{x^2}{e^{3x}} \right)$

Solution: $h(x) = 2(\ln(x^2) - \ln(e^{3x})) = 4\ln x - 6x$ so $h'(x) = \frac{4}{x} - 6$.

20. Let
$$f(x) = \sqrt{3x+1}$$
.

(a) Find the instantaneous rate of change of f(x) when x = 5.

Solution:
$$f'(x) = \frac{1}{2}(3x+1)^{-1/2}(3) = \frac{3}{2\sqrt{3x+1}}$$
 so $f'(5) = \frac{3}{8}$.

(b) Find the equation of the tangent line to f(x) when x = 5.

Solution: We have from above that $f'(5) = \frac{3}{8}$, so the slope of the tangent line is $\frac{3}{8}$. Now, f(5) = 4 so the equation of the tangent line is

$$y = 4 + \frac{3}{8}(x - 5).$$

(c) Find f''(5).

Solution:

$$f(x) = \sqrt{3x+1}$$

$$f'(x) = \frac{3}{2}(3x+1)^{-1/2}$$

$$f''(x) = -\frac{9}{4}(3x+1)^{-3/2}$$

$$f''(5) = -\frac{9}{4} \times \frac{1}{64}$$

$$= -\frac{9}{256}$$