MA 614 – Homework 14 Due Friday, April 24

Your answers should be detailed explanations in quality mathematical English. You must type your homework in LaTeX.

- 1. For two bounded posets P and Q (that is, each poset has a $\hat{0}$ and $\hat{1}$), define the diamond product of P and Q to be $P \diamond Q := [(P \hat{0}) \times (Q \hat{0})] \cup \hat{0}$. Show that $\mu(P \diamond Q) = -\mu(P) \cdot \mu(Q)$. (For a poset R with $\hat{0}$ and $\hat{1}$, $\mu(R)$ is defined to be $\mu(\hat{0}, \hat{1})$.)
- 2. Let P be the poset on the set $\mathbf{Z}^2 = \{(a,b) : a,b \in \mathbf{Z}\}$ with the order relation

$$(a,b) \le (c,d)$$
 if $b \le d$ and $|c-a| \le d-b$.

Find an expression for the Möbius function $\mu((0,0),(m,n))$ and prove that it holds for all m,n.

- 3. Let P be a finite poset. A map $f: P \to P$ on a poset P is called a *closure operator* if for all $s,t \in P$ we have $t \leq f(t)$, f(f(t)) = f(t), and $s \leq t \implies f(s) \leq f(t)$. The fixed points of f, i.e. those $s \in P$ such that f(s) = s, are called *closed* elements. The elements of f(P), i.e. the image of f, form an induced subposet of P called the *quotient* of P relative to the closure operator f.
 - (a) Prove that an element $s \in P$ is closed if and only if $s \in f(P)$.
 - (b) Show that for all $s, t \in P$,

$$\sum_{\substack{u \in P \\ f(u) = f(t)}} \mu(s, u) = \begin{cases} \mu_{f(P)}(f(s), f(t)) & \text{if } s = f(s) \\ 0 & \text{if } s < f(s) \end{cases}$$