MA 614 – Homework 4 Due Friday, Feb 6

Your answers should be detailed explanations in quality mathematical English. You must type your homework in LaTeX.

- 1. Find the ogf's for the following sequences.
 - (a) $(a_n)_{n>0}$ where a_n is the number of compositions using parts from $\{1,3\}$.
 - (b) $(b_n)_{n\geq 0}$ where b_n is the number of compositions using parts from $\{1,2,3\}$.
 - (c) $(d_n)_{n\geq 0}$ where d_n is the number of compositions using parts from $\{1,2,3\}$ where the 2's are given one of five colors.
- 2. For $n \ge 0$, let a_n be the number of compositions of n using positive integers where every part is odd. (We choose by convention that $a_0 = 1$, since there is 1 empty composition).
 - (a) Find the ogf for $(a_n)_{n>0}$.
 - (b) Using the resulting ogf, prove that $a_n = F_{n-1}$, the (n-1)-st Fibonacci number.
 - (c) Where have you seen this result before?
- 3. For $n \ge 0$, let a_n be the number of compositions of n using positive integers where every part is greater than or equal to two. (We again choose by convention that $a_0 = 1$, since there is 1 empty composition).
 - (a) Find the ogf for $(a_n)_{n>0}$
 - (b) Using the resulting ogf, express a_n in terms of Fibonacci numbers.
- 4. Use Euler's generating function identity for p(n) to find an expression for the number of partitions of n with no part equal to 1 or 2 in terms of values of the partition function p(n).
- 5. Let $p_k(n)$ denote the number of partitions of n with exactly k parts. Let $q_k(n)$ denote the number of partitions of n into exactly k distinct parts. For example, $q_3(8) = 2$, given by (5,2,1) and (4,3,1). Give a combinatorial proof that

$$q_k\left(n+\binom{k}{2}\right)=p_k(n)$$
.