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Abstract. This is a survey of some recent results on spherical tropical geometry.

1. Introduction

We give a brief survey of some recent results on spherical tropical geometry and spher-
ical Gröbner theory following [Vogiannou] and [Kaveh-Manon]. The classical Gröbner
theory deals with ideals in a polynomial ring and tropical geometry deals with subvari-
eties/subschemes in an algebraic torus (or equivalently ideals in a Laurent polynomial ring).
We will explain how to extend some key notions and results in these theories replacing
an algebraic torus with a spherical homogeneous space. Vogainnou uses spherical tropical
varieties to construct the so-called tropical compactifications for subvarieties in a spherical
homogeneous space, extending the earlier work of Tevelev for subvarieties in an algebraic
torus ([Tevelev]).

As far as the authors know, the idea of developing tropical geometry for spherical varieties
goes back to Gary Kennedy ([Kennedy]). We should also mention the new preprint of Evan
Nash [Nash] which extends the notion of spherical tropical variety for a subvariety in a
spherical homogeneous space to a spherical embedding.

One of our motivations for the study of spherical tropical geometry is to give a description
of the ring of conditions of a spherical homogeneous space in terms of “balanced” fans
generalizing the corresponding well-known picture in the toric case.

2. Preliminaries on tropical geometry

Throughout this survey k denotes the base field which we take to be algebraically closed
and with characteristic 0. We let K to be a the field of formal Puiseux series k{{t}} over
k. It is the algebraic closure of the field of Laurent series k((t)). Recall that each element
of f ∈ K is a series of the form f(t) =

∑∞
i=m ait

i/k for some m ∈ Z and k ∈ N. The field of
Puiseux series K has a natural valuation val : K\{0} → Q which assigns to each f its order
of t, that is, val(f) = m/k provided that am 6= 0. More generally, we can take K to be any
(algebraically closed) field extension of k equipped with a valuation which is trivial on k.

From the point of view of algebraic geometry, tropical geometry is the study of behavior
at infinity of subvarieties of an algebraic torus (k∗)n. Let Y ⊂ (k∗)n be a subvariety. The
behavior at infinity of Y is encoded in a polyhedral fan in Qn, called the tropical variety
of Y . It consists of the leading exponents of all the formal Puiseux curves which lie on Y .
More precisely, let Trop : (K∗)n → Qn be the map defined by

Trop(γ) = (val(γ1), . . . , val(γn)),
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for any γ = (γ1, . . . , γn) ∈ (K∗)n. The tropical variety Trop(Y ) is simply the image of Y (K)
under this map, i.e.

Trop(Y ) = {Trop(γ) | γ ∈ Y (K)}.
It is a basic result in tropical geometry that Trop(Y ) is the support of a rational polyhedral
fan in Qn (see [Maclagan-Sturmfels15, Section 3.3]). More generally, we can take Y to be
a subvariety defined over K. In this case, one shows that Trop(Y ) is a polyhedral complex
(instead of a polyhedral fan) in Qn.

It is a natural question how one can describe Trop(Y ) if Y is given as a zero set of an
ideal I in the Laurent polynomial algebra k[x±1 , . . . , x

±
n ]. The answer to this question is the

content of the so-called fundamental theorem of tropical geometry which we now explain. Let
f(x) =

∑
α cαx

α be a Laurent polynomial. Here x = (x1, . . . , xn), α = (a1, . . . , an) ∈ Zn and
we have used multi-index notation xα = xa11 · · ·xann . To f we assign its tropical polynomial
F which is a piecewise linear function given by:

F (w) = min{w · α | cα 6= 0}.

More generally, we can take f(x) ∈ K[x±1 , . . . , x
±
n ], i.e. the coefficients cα of f can be Puiseux

series. In this case F (x) = min{val(cα) + (w · α) | cα 6= 0}.
The tropical hypersurface V (F ) associated to f is by definition the set of w ∈ Qn where

the above minimum is attained at least twice. Finally, the tropical variety trop(I) associated
to an ideal I ∈ k[x±1 , . . . , x

±
n ] is:

trop(I) =
⋃
f∈I

V (F ).

It is a basic result that in the above intersection only a finite number of the f suffices (see
[Maclagan-Sturmfels15, Section 2.6]). But it is not enough to take a generating set for I. A
set T ⊂ I such that trop(I) =

⋃
f∈T V (F ), is called a tropical basis for I.

Now, let Y ⊂ (k∗)n be a subvariety with ideal I = I(Y ) ∈ k[x±1 , . . . , x
±
n ]. The funda-

mental theorem of tropical geometry asserts that ([Maclagan-Sturmfels15, Section 3.2]):

Theorem 2.1. Trop(Y ) and trop(I) coincide.

The proofs of the above results rely on the Gröbner basis theory of ideals in a polynomial
ring and in particular on the notion of the Gröbner fan of a homogeneous ideal.

For a polynomial f =
∑
α cαx

α ∈ k[x1, . . . , xn] and a vector w ∈ Qn one defines the initial
form inw(f) to be

∑
β cβx

β where the sum is over β for which the minimum min{w · α |
cα 6= 0} is attained. Also for an ideal I ⊂ k[x1, . . . , xn], the initial ideal inw(I) is the ideal
generated by inw(f), for all f ∈ I. Given an ideal I one can group together the vectors in
Qn by saying that w1 ∼ w2, w1, w2 ∈ Qn, if inw1(I) = inw2(I). The following is a basic
theorem in Gröbner theory (see [Sturmfels96, Section 2]).

Theorem 2.2 (Gröbner fan). Let I be a homogeneous ideal (with respect to a positive
weighting of the variables x1, . . . , xn). Then the closures of equivalence classes of ∼ are
rational convex polyhedral cones and form a complete fan in Qn.

Finally, it is worthwhile to mention that there is yet another description of the tropical
variety of Y in terms of toric varieties. For w ∈ Qn let Xw be the toric variety associated
to the fan with single ray generated by w. The variety Xw contains a unique divisor Dw at
infinity. One then has: w ∈ Trop(Y ) if and only if Y ∩Dw 6= ∅, where Y denotes the closure
of Y in Xw.
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This last result motivates the important notion of a tropical compactification. Let
Y ⊂ (k∗)n be a subvariety. The closure Y in a toric variety XΣ ⊂ (k∗)n is a tropical
compactification if:

(1) Y is a complete variety.
(2) The multiplication map (k∗)n × Y → X is faithfully flat. In particular, this means

that Y intersects all the torus orbits in XΣ.

Note that in the above, the toric variety XΣ itself need not be complete.

Theorem 2.3 (Tevelev). There exists a tropical compactification. It corresponds to the
toric variety associated to a fan whose support is Trop(Y ).

The notion of a tropical compactification appears in [Tevelev], although the concept of a
“good” compactification for a subvariety has been considered previously by several authors.
De Concini and Procesi prove its existence in a very general setting and without referring
to any tropical varieites ([DP83]).

3. Preliminaries on spherical varieties

Let G be a connected reductive algebraic group over an algebraically closed field k. We
let T , B and U be a maximal torus in G, a Borel subgroup containing T and a maximal
unipotent subgroup contained in B respectively. We denote the weight lattice and the
semigroup of dominant weights of G by Λ and Λ+ respectively. We also denote the positive
Weyl chamber (corresponding to a choice of Borel B) by Λ+

R .
A normal G-variety X is called spherical if B has a dense open orbit (note that since all

the Borel subgroups are conjugate this is independent of the choice of B). A homogeneous
space X is spherical if it is spherical for the left action of G. It is well-known that a quasi-
projective G-variety X is spherical if and only if for any G-linearized line bundle L on X the
space of sections H0(X,L) is a multiplicity-free G-module, i.e. each irreducible G-module
appears with multiplicity at most 1.

We let ΛX ⊂ Λ denote the lattice of weights of B-eigenfunctions in the field of rational
functions k(X). Since B has an open orbit it follows that the map which assigns to a
B-eigenfunction its weight, gives an isomorphism between k(X)(B)/k∗ and ΛX . One can
show that there is a natural choice of a maximal torus T ⊂ G such that the weight lattice
of TX = T/(T ∩H) can be identified with the lattice ΛX . The lattice ΛX is usually called
the weight lattice of X.

Next important object associated to X is the valuation cone VX . It is the set of all
G-invariant valuations v : k(X) \ {0} → Q. Evaluating a G-invariant valuation on the
set of B-eigenfunctions in k(X) gives us a homomorphism from VX to the Q-vector space
Hom(ΛX ,Q). It is well-known that this homomorphism is one-to-one. It is a fundamental
result of Brion ([Brion90]) and Knop ([Knop94]) that the image of VX in Hom(ΛX ,Q) is a
simplicial cone which is the fundamental domain for an action of a finite reflection group.
The reflections are with respect to the hyperplanes orthogonal to the so-called spherical roots
of X. The set of invariant valuations VX hence is referred to as the valuation cone of X.
It is a main object in the Luna-Vust classification of spherical embeddings by colored fans
([Luna-Vust83, Knop89]). It plays a role analogous to the vector space NQ of one-parameter
subgroups in the classification of toric varieties by fans.
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4. Spherical tropicalization

Let X = G/H be a spherical homogeneous space and Y ⊂ X a subvariety. Following
[Vogiannou] we explain how to associate to Y a fan in the valuation cone VX which encodes
the “behavior at infinity” of Y in regard to G-equivariant embeddings of G/H. We start by
recalling a classical result of Sumihiro ([Sumihiro74]).

Theorem 4.1 (Sumihiro). Let v : k(X)→ R ∪ {∞} be a valuation.

(1) For every 0 6= f ∈ k(X) there exists a nonempty Zariski open subset Uf ⊂ G such
that the value v(g · f) is the same for all g ∈ Uf . Let us denote this value by v̄(f),
i.e.

v̄(f) = v(g · f), ∀g ∈ Uf .
(2) We have v̄(f) = min{v(g · f) | g ∈ G}.
(3) v̄ is a G-invariant valuation on X.

Now let γ ∈ X(K) be a (formal) curve on X, i.e. a point of X defined over the field K
of Puiseux series. Theorem 4.1 implies that v̄γ defined below is a well-defined G-invariant
valuation:

v̄γ(f) = val(f(g · γ(t))),

for every 0 6= f ∈ A and g ∈ G in general position. Considering valuations of the form v̄γ
goes back to [Luna-Vust83]. Following [Vogiannou] we call the map

(1) Trop : X(K)→ VX , γ 7→ v̄γ ,

the spherical tropicalization map. The spherical tropical variety Trop(Y ) of Y is the image
of Y (K) under the map Trop. In [Vogiannou] the following is proved:

Theorem 4.2 (Vogiannou). Trop(Y ) is the support of a rational polyhedral fan in the valua-
tion cone VX . Moreover, there is a fan Σ with support Trop(Y ) such that the corresponding
spherical embedding gives a tropical compactification of Y . (Here we mean the spherical
embedding associated to Σ in the sense of Luna-Vust and the fan Σ has no colors, i.e. the
corresponding embedding is toroidal.)

The proof of the above theorem in [Vogiannou] relies on the Luna-Vust theory of spherical
embeddings.

Remark 4.3. We would like to point out that the spherical tropicalization map can also be
constructed using the non-Archimedean spherical Cartan decomposition in [Luna-Vust83]
(see also [Sakellaridis12, Gaitsgory-Nadler10] for the non-Archimedean spherical Cartan
decomposition).

Below is a baby example to illustrate the construction.

Example 4.4. Consider the variety X = A2\{(0, 0)} for the natural action of G = SL(2,k).
It is a spherical homogeneous space. The algebra of regular functions k[X] is just the
polynomial ring k[x, y]. The weight lattice ΛX coincides with the weight lattice Λ of G
and can be identified with Z. The function f(x, y) = y is a B-eigenfunction in k[X] whose
weight is 1, namely the generator of ΛX . Let γ = (γ1, γ2) be a formal curve in X = A2 \{0}.

Let us write γ1(t) =
∑
i ait

i and γ2(t) =
∑
i bit

i. Let g =

[
g11 g12

g21 g22

]
. We compute that

f(g · γ(t)) = g21γ1 + g22γ2. From the definition we have v̄γ(y) = val(g · γ(t)) for g in general
position. Thus

(2) v̄γ(y) = val(g21γ1(t) + g22γ2(t)) = min(val(γ1(t)), val(γ2(t)).
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It is relatively straightforward to extend the above notion of tropicalization to the context
of Berkovich spaces. We briefly explain this following [Kaveh-Manon, Section 4.6]. First we
recall the notion of a Berkovich analytic space or analytification of a variety X. It plays a
central role in non-Archimdean geometry.

Let A be a finitely generated k-algebra and X = Spec(A) the corresponding affine variety.

Let Ã = A ⊗k K where as before K = k{{t}} is the field of formal Puiseux series in an
indeterminate t. It is equipped with a natural valuation val : K → Q ∪ {∞}. .

Definition 4.5 (Multiplicative seminorm). A function p : Ã→ R≥0 is called a multiplicative
seminorm on A if it satisfies the following:

(a) p(fg) = p(f)p(g),
(b) p(λ) = exp(−val(λ)),

(c) p(f + g) ≤ max(p(f), p(g)), for all f, g ∈ Ã and λ ∈ K.
The analytification Xan of X is the collection of all multiplicative seminorms

on Ã. We endow Xan with the coarsest topology in which the maps Xan → R,
p 7→ p(f), are continuous for every f ∈ Ã.

For a multiplicative seminorm p one defines the corresponding valuation vp : Ã→ Q∪{∞}
by vp(f) = − log(p(f)), for all f ∈ Ã. (in this context it is more convenient to consider a

valuation as a map from Ã to R ∪ {∞} and define the value of 0 to be ∞).
There is a natural embedding j : X(K) ↪→ Xan given by restricting to points in X(K).

More precisely, for each point γ ∈ X(K) we let p = j(γ) to be the multiplicative seminorm
defined by:

(3) j(γ)(f) = exp(−val(f(γ))).

Now let X be a quasi-affine spherical homogeneous space with ring of regular functions
A = k[X]. Recall that to any valuation v on X we can associate a G-invariant valuation v̄
on X (see Theorem 4.1). For any f ∈ k(X), the value v̄(f) is defined by:

v̄(f) = v(g · f),

for any g ∈ G in general position, i.e. g lies in some Zariski open subset Uf of G.
More generally, let Y ⊂ X be a subvariety. Let π : A → k[Y ] be the algebra homomor-

phism induced by the inclusion of Y in X.
For a valuation v : k[Y ]→ R∪{∞} we denote by v̄ : A→ R∪{∞} the valuation defined

as follows. For any f ∈ A let:

(4) v̄(f) = v(π(g · f)),

for g in some Zariski open subset Uf . Now let p ∈ Y an with the associated valuation vp.
Let v̄p be the G-invariant valuation on k(X) associated to vp as above.

Definition 4.6 (Spherical tropicalization map). We define the spherical tropicalization map
Trop : Y an → VX by:

p 7→ v̄p.

Proposition 4.7. We have the following:

(1) The map Trop : Y an → VX is continuous.
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(2) The map Trop extends the tropicalization map Trop : Y (K) → VX introduced in
(1). That is, the diagram below commutes:

Y (K) �
� j //

Trop ##

Y an

Trop}}
VX

5. Gröbner theory for G-algebras

The purpose of this section is to discuss an extension of the Gröbner theory for ideals
in a polynomial ring to ideals in the coordinate ring of an affine spherical G-variety. As in
the usual tropical geometry, this can be used to give a description of the spherical tropical
variety of a subvariety Y ⊂ G/H in terms of its associated ideal.

Throughout this section X is an affine spherical variety with A = k[X] its coordinate
ring. We write

A =
⊕
λ∈Λ+

Wλ,

for the isotypic decomposition of A as a G-module, i.e. Wλ is the sum of all copies of the
irreducible G-module Vλ in A (since X is spherical we know Wλ = {0} or Vλ).

Analogous to the well-known notion of dominant weight order on Λ, one defines a partial
order >X in ΛX which we call the spherical dominant order. For λ, µ ∈ ΛX we say that λ >X
µ is µ− λ is a linear combination of spherical roots with non-negative integer coefficients.

We take a total order � on ΛX that refines the spherical dominant order >X . The total
order � gives rise to a filtration on A. Namely, for each λ ∈ Λ+ we define:

A�λ =
⊕
µ�λ

Wµ.

The space A�λ is defined similarly. We denote the associated graded of this filtration by
gr�(A), that is:

gr�(A) =
⊕
λ∈Λ+

A�λ/A�λ.

In fact, one shows that, as a G-algebra, gr�(A) is isomorphic to Ahc, the horospherical
contraction of A. We recall that the horospherical contraction Ahc is a G-algebra that is
isomorphic to A as a G-module, but its ring structure has the following property: for any
two dominant weights λ, µ, the product of the λ-isotypic and µ-isotypic components lies in
the (λ+ µ)-isotypic component (see [Popov87]).

For an ideal I ⊂ A we define its initial ideal in�(I) to be the ideal in gr�(A) generated by
the images of all f ∈ I. We say that a subset G ⊂ I is a spherical Gröbner basis if the image
of G in in�(I) generates this ideal. In [Kaveh-Manon] the authors give a generalization of
the well-known division algorithm to this setting and prove that a spherical Gröbner basis G
is a set of ideal generators for the original ideal I. Generalizing an analogous statement from
Gröbner theory of ideals in a polynomial ring, in [Kaveh-Manon] the following is proved.

Theorem 5.1. An ideal I ⊂ A has a finite number of initial ideals (regarded as ideals in
the horospherical contraction Ahc of A).

This theorem then implies the existence of a universal spherical Gröbner basis for I.
Next we consider generalizations of the notions of initial ideal with respect to a vector

w ∈ Qn and Gröbner fan of an ideal. In the spherical Gröbner theory the role of a vector
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w ∈ Qn is played by a G-invariant valuation on the field of rational functions k(X). A
G-invariant valuation v gives rise to a filtration on the algebra A defined as follows. For
every a ∈ Q put:

Av≥a = {f ∈ A | v(f) ≥ a},
(the subspace Av>a is defined similarly). We note that Av≥a =

⊕
〈v,γ〉≥aWγ . The associated

graded algebra of v is:

grv(A) =
⊕
a∈Q

Av≥a/Av>a.

Since v is G-invariant, each subspace in the filtration is G-stable and the algebra grv(A) is
naturally a G-algebra. We make the following observation:

Proposition 5.2. For v ∈ VX , the associated graded algebra grv(A) depends only on the
face σ of the cone VX which contains v in its relative interior (thus we also write grσ(A)
instead of grv(A)). When v lies in the interior of VX then grv(A) is isomorphic to the
horospherical contraction Ahc.

For f ∈ A we let inv(f) denote the image of f in the quotient space Av≥a/Av>a, where
a = v(f). For an ideal I ⊂ A, the initial ideal inv(I) ⊂ grv(A) is the ideal generated by
inv(f), for all f ∈ I. Extending the usual Gröbner theory we define an equivalence relation
on the valuations: for v1, v2 ∈ VX we say v1 ∼ v2 if they lie on the relative interior of
the same face σ of VX and also inv1(I) = inv2(I) regarded as ideals in grσ(A). We would
like to show that the equivalence classes of ∼ form a fan. For this we need to assume that
A =

⊕
i≥0Ai is graded and G acts on A preserving the grading. Moreover, we assume that

each graded piece Ai is a multiplicity free G-module. This implies that A is a multiplicity
free (G×k∗)-algebra. Thus A is the ring of regular functions on a spherical (G×k∗)-variety
X. In this situation by the valuation cone VX we mean the cone of (G × k∗)-invariant
valuations.

Theorem 5.3. Let A be graded as above. Let I ⊂ A be a homogeneous ideal. Then the
closures of equivalence classes of ∼ form a fan which we call the spherical Gröbner fan of
I.

There are some important differences between the toric/polynomial case and the general
spherical case which makes the spherical theory more complicated.

• In the torus case the isotypic components are 1-dimensional corresponding to dif-
ferent (Laurent) monomials, while in the general spherical case they are irreducible
G-modules and usually have dimension greater than 1.

• If fα = xα, fβ = xβ are two monomials in a polynomial algebra then fαfβ = fα+β .
In the spherical case, if fγ ∈ Wγ , fµ ∈ Wµ where A =

⊕
λWλ is the isotypic

decomposition of the G-algebra A, then in general, fγfµ does not necessarily lie in
Wγ+µ but rather in Wγ+µ direct sum with Wλ where λ is greater than γ + µ in the
spherical dominant order >X .

6. Spherical tropical variety from an ideal

In this section following [Kaveh-Manon] we describe how to define a spherical tropical
variety for a subvariety in the open Borel orbit using its defining ideal. We then state a
spherical version of the fundamental theorem of tropical geometry.

To this end, we apply the spherical Gröbner theory results (specifically the spherical
Gröbner fan) from the previous section to the algebra of sections of a line bundle on a
spherical homogeneous space.
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Let X = G/H be a spherical homogeneous space (we do not require X to be quasi-
affine). Let v ∈ VX be a G-invariant valuation. Let Xv denote the equivariant embedding
of X corresponding to the fan with a single ray generated by v. The spherical variety
Xv consists of two G-orbits: the open G-orbit X and a G-stable prime divisor which we
denote by Dv. The orbit Dv is the unique closed G-orbit in Xv. The geometric valuation
corresponding to the divisor Dv is a multiple of the valuation v.

We fix a Borel subgroup B. We let XB be the open B-orbit in X = G/H. One knows
that XB is an affine variety. We denote the set of B-stable prime divisors in X by D(X).
One observes that XB = X \

⋃
D∈D(X)D. We also denote the open B-orbit in Dv by D′v,

and the set of B-stable prime divisors in Xv by D(Xv). One defines a subvariety Xv,B ⊂ Xv

by:

Xv,B = Xv \
⋃

D∈D(Xv)\{Dv}

D.

One shows the following (see [Knop89, Theorem 2.1]): Xv,B is a B-stable affine subvariety
of Xv and Xv,B ∩ Dv is the B-orbit D′v. Moreover the coordinate ring of Xv,B can be
described as:

k[Xv,B ] = {f ∈ k[XB ] | v(f) ≥ 0}.

More generally, one can find a B-stable affine neighborhood of any closed G-orbit in a
spherical embedding (in [Knop89, Section 2] this affine neighborhood is denoted by X0).

The notions of associated graded and initial ideal for k[XB ] with respect to a valuation
v ∈ VX are defined as before. (Notice that we are not assuming here that X is quasi-affine
and hence k[X] could be very small, e.g. it could consist only of constant functions, while
on the other hand, XB is always an affine variety.) More precisely, for every a ∈ Q we put
k[XB ]v≥a = {f ∈ k[XB ] | v(f) ≥ a} (the subspace k[XB ]v>a is defined similarly). The
corresponding associated graded is:

grv(k[XB ]) =
⊕
a∈Q≥0

k[XB ]v≥a/k[XB ]v>a.

We note that each subspace in the filtration is B-stable and grv(k[XB ]) is a B-algebra.
One can show that if v1, v2 lie in the relative interior of the same face σ of the valuation
cone VX then the corresponding associated graded algebras grv1(k[XB ]) and grv2(k[XB ])
are naturally isomorphic.

For each f with v(f) = a let inv(f) denote the image of f in the quotient space
k[XB ]v≥a/k[XB ]v>a. For an ideal J ⊂ k[XB ] we let inv(J) be the ideal in grv(k[XB ])
generated by all the inv(f), ∀f ∈ J .

Now we define the notion of a spherical tropical variety of a subscheme of XB given by
an ideal in the coordinate ring k[XB ]).

Definition 6.1 (Spherical tropical variety of an ideal in the coordinate ring of XB). Let
J ⊂ k[XB ] be an ideal. We define trop(J) to be the set of all v ∈ VX such that the initial
ideal inv(J) is not equal to grv(k[XB ]). In other words, inv(J) does not contain a unit
element. We call trop(J) the spherical tropical variety of J .

We say that a set T = T (J) ⊂ J is a spherical tropical basis for J if for every v ∈ VX
the following holds: inv(J) ⊂ grv(k[XB ]) contains a unit element, i.e. v /∈ trop(J), if and
only if there exists f ∈ T such that inv(f) is a unit element. The following is prove in
[Kaveh-Manon, Section 4.3]
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Theorem 6.2 (Existence of a finite spherical tropical basis). Every ideal J ⊂ k[XB ] has a
finite spherical tropical basis.

Let us say a few words about how spherical Gröbner theory is used in [Kaveh-Manon]
to prove the above statements. This is a generalization of the usual approach in tropical
geometry. Namely, given an ideal I ⊂ k[x±1 , . . . , x

±
n ] in a Laurent polynomial ring, one

considers its homogenization Ĩ ⊂ k[x1, . . . , xn+1] and relates the tropical variety of I with

the Gröbner fan of the homogeneous ideal Ĩ. To extend this to the spherical setting, we
consider a G-line bundle on X = G/H. It corresponds to a choice of a character χ of the
subgroup H, and the sections in H0(X,L) can be identified with χ-eigenfunctions in k[G]
for the right action of H. Now consider the ring of sections A of L, that is the graded
algebra:

A =
⊕
i≥0

H0(X,L⊗i).

where we set A0 = k. Since X is spherical for the action of G, one sees that A is a
multiplicity-free (G×k∗)-algebra. We assume that there is a B-weight section s ∈ H0(X,L)
which vanishes on all B-stable divisors in X. Given such a section s one can define a
homomorphism π : A → k[XB ] by sending f ∈ Ai to f/si ∈ k[XB ], for all i. For an ideal
J ⊂ k[XB ], we consider π−1(J) ⊂ A which is a homogeneous ideal (we think of this as a
generalization of the notion of homogenization of an ideal in a Laurent polynomial ring).
We then use the existence of spherical Gröbner fan for the homogeneous ideal π−1(J) in the
multiplicity-free algebra A to conclude the existence of a finite tropical basis for J .

Finally we give a generalization of the fundamental theorem of tropical geometry to the
spherical setting. It states that the spherical tropical variety as defined using initial ideals in
Borel charts coincides with the spherical tropical variety defined using tropicalization map
and invariant valuations.

Let Y ⊂ X = G/H be a subvariety. For each Borel subgroup B, we let JB be the defining
ideal of Y intersected with the open B-orbit XB . The following is proved in [Kaveh-Manon,
Section 4.5]

Theorem 6.3 (Fundamental theorem). The following coincide:

(a) The set trop(Y ) =
⋃
B trop(JB), where the union is over all Borel subgroups of

G (one shows that it is enough to take the union over a finite collection of Borel
subgroups).

(b) The set Trop(Y ) = {Trop(γ) ∈ VX | γ ∈ Y (K) a formal Puiseux curve on Y }.

Example 6.4. As in Example 4.4 consider the spherical variety X = A2 \ {(0, 0)} for the
natural action of G = SL(2,k). We recall that this action is transitive. The stabilizer of the
point (0, 1) is the subgroup U− of lower triangular matrices with 1’s on the diagonal and
we identify X with G/U− . Let B and B− denote the Borel subgroups of upper triangular
and lower triangular matrices respectively. It is easy to see that the B-orbit and B−-orbit
of the point (0, 1) are XB = A2 \ {y 6= 0} and XB− = A2 \ {x 6= 0}. Thus the coordinate
rings k[XB ] and k[XB− ] are k[x, y, y−1] and k[x, y, x−1] respectively.

Clearly the action of G on X extends to the whole projective plane P2. One can verify
that every G-orbit O ⊂ P2 is covered by the open B-orbit and the open B−-orbit contained
in O.

A description of the tropicalization of a curve for this example is obtained in [Vogiannou,
Example 3.10]. Namely, Trop(Y ) is the whole VX = Q if Y passes through the origin and
it is the negative ray in Q otherwise. We verify the fundamental theorem (Theorem 6.3)
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by computing the tropical variety of a curve Y defined by a principal ideal I ⊂ k[x, y]
(Definition 6.1). Let I = 〈f〉 be a principal ideal where f is a nonconstant polynomial. We

write f =
∑d
i=m fi as the sum of its homogeneous component, i.e. fi is a homogeneous

polynomial of degree i in k[x, y] and fm, fd are nonzero. First consider the case v ≥ 0.
One can check that inv,B(f) is a unit if fm is either constant or a power of y. Thus
v ∈ trop(IB) if and only if fm is neither constant nor a power of y. Similarly, v ∈ trop(IB−)
if and only if fm is neither constant nor a power of x. Putting these together we see that
v ∈ trop(Y ) if and only if fm is not a constant. The case v < 0 can be dealt with in a
similar fashion. In this case we have v ∈ trop(IB) if and only if fd is not a power of y, and
v ∈ trop(IB−) if and only if fd is not a power of x. It thus follows that v < 0 always lies in
trop(Y ) = trop(IB) ∪ trop(IB−). In summary,

trop(Y ) =

{
VX f0 = 0

{v ∈ VX | v ≤ 0} f0 6= 0,

as expected.

7. Spherical amoebas

Finally, we address the notion of amoeba of a variety. When k = C one defines a
logarithm map on the torus (C∗)n as follows. Fix a real number t > 0. The logarithm map
Logt : (C∗)n → Rn is simply defined by:

Logt(z1, . . . , zn) = (logt(|z1|), . . . , logt(|zn|)).
The amoeba of a subvariety Y ⊂ (C∗)n is defined to be the image of Y under the logarithm
map. A well-known theorem states that as t approaches 0, the amoeba of Y approaches, in
Hausdorff metric, to the tropical variety of Y .

In [Kaveh-Manon, Section 6] an extension of this notion is suggested for a spherical
homogeneous space X = G/H. Although for this to work, one needs to assume that
(Archimedean) Cartan decomposition holds for X in the following sense. Throughout this
section the ground field is k = C.

Let TX be the torus associated to X = G/H. It can be identified with T/T ∩ H for a
maximal torus T ⊂ G. Thus TX can be also identified with the T -orbit of eH ∈ X. The
lattice of characters of TX is ΛX . We consider the exponential map exp : Lie(TX)→ TX ⊂
X. The valuation cone sits in the vector space Hom(ΛX ,Q) which in turn we consider as a
subset of Lie(TX). The image exp(VX) of the valuation cone thus naturally sits in TX ⊂ X.

Assumption 7.1 ((Archimedean) Cartan decomposition for a spherical homogeneous space).
There exists a maximal compact subgroup K of G which is a real algebraic subgroup such
that each K-orbit in G/H intersects the image of the valuation cone exp(VX) at a unique
point.

In fact, the authors originally conjectured that the above (Archimdean) Cartan decom-
position should hold for any spherical homogeneous space. Later, we learned that Victor
Batyrev had made the same conjecture some years ago (some related results can be found
in [KKSS15]).

We can then define the map Lt : X → VX by:

x 7→ Logt((K · x) ∩ exp(VX)) ∈ VX ,
that is, first we intersect the orbit K ·x with exp(VX) and then map it to the valuation cone
by the logarithm map Logt. We call Lt a spherical logarithm map.
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Definition 7.2 (Spherical amoeba). Let Y ⊂ X be a subvariety. We denote the image of
Y under the map Lt by At(Y ) and call it the spherical amoeba of the subvariety Y .

In the special case of X = GL(n,C) regarded as a (GL(n,C)×GL(n,C))-spherical homo-
geneous space, the general statement that spherical amoeba should approach the spherical
tropical variety specializes to a linear algebra statement that the Smith normal form of a
matrix (whose entries are Laurent series in one variable t) is a limit of the logarithm of sin-
gular values of the matrix as t approaches 0. The authors are not aware of such a statement
in the literature relating singular values and invariant factors.

Let us explain this in more detail. Recall that if A is an n × n complex matrix, the
singular value decomposition states that A can be written as:

A = U1DU2,

where U1, U2 are n×n unitary matrices and D is diagonal with nonnegative real entries. In
fact, the diagonal entries of d are the eigenvalues of the positive semi-definite matrix

√
AA∗

where A∗ = Āt. The diagonal entries of D are usually referred to as the singular values of
A.

Let A(t) be an n × n matrix whose entires Aij(t) are Laurent series in t (over C). We
recall that the Smith normal form theorem (over the ring of formal power series which is a
PID) states that A(t) can be written as:

A1(t)τ(t)A2(t),

where A1(t), A2(t) are n×n matrices with power series entries and invertible over the power
series ring, and τ(t) is a diagonal matrix of the form τ(t) = diag(tv1 , . . . , tvn) for integers
v1, . . . , vn. The integers v1, . . . , vn are usually called the invariant factors of A(t).

We have the following statement ([Kaveh-Manon, Section 6]). A direct proof can be given
using the Hilbert-Courant min-max principle.

Theorem 7.3. Let A(t) be an n× n matrix whose entries Aij are Laurent series in t with
nonzero radii of convergence. For sufficiently small t 6= 0, let d1(t) ≤ · · · ≤ dn(t) denote the
singular values of A(t) ordered increasingly. Also let v1 ≥ · · · ≥ vn be the invariant factors
of A(t) ordered decreasingly. We then have:

lim
t→0

(logt(d1(t)), . . . , logt(dn(t))) = (v1, . . . , vn).
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186–245.
[Maclagan-Sturmfels15] Maclagan, D.; Sturmfels, B. Introduction to tropical geometry. Graduate Studies in

Mathematics, AMS (2015).

[Nash] Nash, E. Tropicalizing spherical embeddings. arXiv:1609.07455.
[Popov87] Popov, V. L. Contractions of actions of reductive algebraic groups, Math. USSR- Sb. 58 (1987),

no. 2, 311–335.
[Sakellaridis12] Sakellaridis, Y.
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