- 1. All triangles are scalene. True False
- 2. Check each number which is a multiple of three.

	5	7	9
--	---	---	---

3. Check each number which is negative.

- 4. Compute: $\sum_{i=1}^{25} i$. Answer:
- 5. "A three sided figure." defines what geometrical term? Answer:
- 6. What is the English name for a large african or indian mammal with floppy ears and and a long nasal trunk?
- 7. Compute the derivative of $f(x) = x^3 + 4x 2$. Answer:
- 8. Compute the partial derivative of $\frac{\partial}{\partial y} f(x,y)$ if $f(x,y) = x^3 + 4x 2\sin(yx)$. Answer:
- 9. Compute the definite integral: $\int_{1}^{3} f(x) dx$ if $f(x) = x^{3} + 4x 2$. Answer:

f(x)

f(2)

 $\int_{0}^{1} f(x) dx \qquad \frac{d}{dx} f(x)$

 $\sin(x)$

10. Complete the table:

$$x^{2} + 3$$

 $\exp(x)$

11. Classify the triangle shown below.

isosceles

	right
--	-------

equiangular

12. Classify the triangle shown below.

isosceles

 ${\it equiangular}$

right

13. Estimate the age of the person in the picture below.

40-49

50-59

60-69

70-79

80-89

90-99

14. Find the area of the isosceles triangle shown below. Answer:

15. Find the area between the graphs of $y = \frac{1}{4}x^2$ and y = x, for $0 \le x \le 4$ shown below.

Answer:

16.	For each rectangle below, count the number B of boundary nails, the number I of interior nails, and
	also compute the area of the rectangle, assuming that adjacent horizontal or vertical pairs of nails are
	1 unit apart.

$$B =$$
 $I =$ $Area =$

18. Compute:
$$\sum_{i=1}^{25} 3i + 2$$
. Answer:

19. Compute:
$$\sum_{i=1}^{25} r i + s$$
. Answer:

20. Compute:
$$\sum_{i=1}^{30} 2i + 20$$
. Answer:

22. What is the value of the cell in row 1 and column,3 of
$$\begin{pmatrix} 78 & -2 & 33 & -58 & 98 \\ -8 & -69 & -17 & 75 & 5 \\ -90 & 17 & 58 & -31 & -23 \\ -81 & -87 & -21 & -30 & 19 \\ -43 & 37 & 15 & -50 & -93 \end{pmatrix}?$$

Consider the function
$$f(1,y)$$
 of y : Decide if it is increasing, decreasing or neither over its natural domain.

24.	Solve for 6	θ , θ in	$[0,2\pi)$:	$2\sin(\theta)^2$	$-\sin(\theta) = 3$
				1	1

$$\pi$$
 $\frac{5}{4}\pi$ All reals No solution

25. Solve for
$$\theta$$
, θ in $[0,2\pi]$: $2\sin(\theta)^2 - \sin(\theta) = 3$

$$\frac{1}{2}\pi$$
No solution
$$\frac{5}{4}\pi$$

$$\pi$$

$$\frac{1}{2}\pi$$
 No solution $\frac{5}{4}\pi$

27. Bill can mow a yard in 3 hours. Jim can mow the same yard in 5 hours. How many hours does it take Bill and Jim to mow the yard together, assuming they do not interfere with each other? Select the most nearly correct answer.

	·			
2.125	1.875	\Box 4	None o	f the others

28. Classify the indeterminancy type of the following limits:

i)
$$\lim_{x \to \infty} \frac{-4x+11}{-4+11x}$$
 $\boxed{\qquad} \frac{\infty}{-\infty}$ $\boxed{\qquad} 0/0$ $\boxed{\qquad} 0^0$

ii)
$$\lim_{x \to \infty} \frac{x^2 - 4}{x - 2}$$
 $\boxed{\frac{\infty}{-\infty}}$ $\boxed{0/0}$ $\boxed{0}$ 0^0

29. Classify the indeterminancy type of the following limits:

i)
$$\lim_{x \to \infty} \frac{-1x+3}{-1+3x}$$
 $\frac{\infty}{-\infty}$ $\frac{\infty}{-\infty}$ $\frac{\infty}{-\infty}$ $\frac{1}{2}$ $\frac{\infty}{-\infty}$ $\frac{1}{2}$ $\frac{1}{2}$

ii)
$$\lim_{x \to \infty} \frac{x^2 - 4}{x - 2}$$
 $\boxed{ } \frac{\infty}{-\infty}$ $\boxed{ } 0/0$ $\boxed{ } 0^0$ $\boxed{ } \infty^{\infty}$ $\boxed{ } \infty/\infty$

30. Classify the indeterminancy type of the following limits:

i)
$$\lim_{x \to \infty} \frac{-5x+7}{-5+7x}$$
 $\frac{\infty}{-\infty}$ $\frac{\infty}{-\infty}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

ii)
$$\lim_{x \to \infty} \frac{x^2 - 4}{x - 2}$$
 $\boxed{\frac{\infty}{-\infty}}$ $\boxed{0}/0$ $\boxed{0}$ 0^0

31. Given $A = \{1, 2, 3\}, B = \{5, 14, 17\}.$

a) How many members in $A \cup B$? Answer:

b) How many members in $A \cap B$? Answer:

c) How many members in $A \times B$? Answer:

32. Given $A = \{4, 5, 7, 11\}, B = \{5, 14, 17\}.$

a) Is $A \subset B$? Answer: yes n

b) Is $3 \in A$? Answer: \Box false \Box true

c) How many members in $(A \times B) \cup (B \times A)$? Answer:

33. From the given information about the arithmetic sequence $x_1, x_2, x_3 \cdots x_n \cdots$, find its n^{th} term.

a) $x_1 = 12, x_2 = 16. x_n =$

b) $x_4 = 12, x_6 = 16. x_n =$

c) For some fixed positive integer $A, x_A = 12, x_{A+1} = 16. x_n =$

34. Calculate: $(40 \div 35) + (6 \div 40) =$

35. Calculate: $(30 \cdot 13) + (8 \div x) =$

36. a) Calculate: $\lim_{x \to 40} \frac{1}{34} x^2 + 6$

b) Calculate: $\frac{\partial^3}{\partial x^2 \partial y} (x^3 \sin(yz) + y^4 x + \ln(z))$ Answer:

Answer Key for addpicandragitv1

- $1. \diamond 2$
- 2. \$\\$;1;;;4
- $3. \Leftrightarrow ;;;;;;7;;;10;;12$
- 4. \diamond 325
- 5. \diamond triangle, Triangle
- 6. \diamond Elephant, elephant
- 7. $\Rightarrow 3x^2 + 4$
- 8. \diamond $-2\cos(yx)x$
- 9. \diamond 32
- 10. $\Rightarrow \sin(2)$
 - $\diamond 1 \cos(1)$
 - $\diamond \cos(x)$

 - $\diamond \exp(2)$
 - $\diamond -1 + \exp(1)$
 - $\diamond \exp(x)$
- 11. \diamond 1
- $12. \Leftrightarrow 1$
- 13. \diamond 3
- 14. ♦ 16.583
- 15. $\diamond \frac{8}{3}$
- 16. \diamond 12
 - \$ 3

 - ♦ 8
 - ♦ 14
 - \$ 6 ♦ 12
 - ♦ 18
 - \$ 10
 - ♦ 18
- $17. \Leftrightarrow 1275$
- 18. \$ 1025
- $19. \quad \diamond \ 25\,s + 325\,r$
- $20. \quad \diamond \ 1530$
- $21. \quad \diamond \quad 2281883$
- 23. \diamond 3 ln(11)

- $24. \diamond 1$
- 26. \diamond 1
- 27. \diamond 2
- 28. \diamond 1
- 29. \diamond 1
 - \$ 2
- 30. 1
- \$ 2
- - \$ 0
 - \$ 9
- $\begin{array}{ccc} 32. & \diamond & 1 \\ & \diamond & 1 \\ & \diamond & 24 \end{array}$
- 33. \diamond 8 + 4 n
 - $\diamond 4 + 2n$
 - $\diamond 12 4A + 4n$
- $34. \Leftrightarrow \frac{181}{140}$
- $35. \quad \diamond \quad \frac{390 \, x + 8}{x}$
- $36. \quad \diamond \quad \frac{902}{17} \\ \quad \diamond \quad 6 \ x \cos(y \ z) \ z$