0. Introduction

e Let £ be a field, char k£ =0,

e X ={xy,...,x,} a set of variables over &

e /1, I, homogeneous ideals of k[X]

o Ry = k[X]/I, Ry = k[X]/L, , V(I) CP{", V(I,) C P}~

Consider the exact sequence

0 > D >S:R1 X Ro mult. ]f[X]/([l, IQ) — 0.

e D diagonal ideal of S = Ry ®; Ry = k| X,Y]/([1, I5), where Y = (y;).
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e Let © be the surjective map

Sym(DD) — R(D)

e Sym(D) = @) Sym,(D) is the symmetric algebra of D,

e R(D) = @;>9 D" is the Rees algebra of D

e ker(y) is the S-torsion of Sym(D)

e In general, it is not easy to find the defining equations of Rees algebras.

o © Vg k is the map

Sym(D) ®g k = k| X]| » R(D) ®¢ k = F(D)

e 7 (D) is the special fiber ring of D.



e 7(D) is the homogeneous coordinate ring of the embedded join variety

J(I, L) Cc P of V(IL), V().

e When [ = I = I, the embedded join variety V' (/='") = J(I, I) is known as
the first secant variety of V/(/), which is constructed by taking the closure of

the secant lines of V(7).

e We write the s-th secant variety of [ as V/(/=°"), which is constructed as the

embedded join variety of V(/<5"1>) and V(I).

e In general, we have V (I<571>) C V(I=5~).



Example: R = k|z,y, 2]

I=(z-x",x47)

General question: When does the secant variety fill out the whole space? |

e If we have the secant variety that does not fill out space, we can define a

map to reduce the dimension of the variety without losing the properties of

the variety.



e We write D~*" for the ideal of the diagonal in the product of V(I=*"'*) and
V(I).

e The special fiber ring of D<°~, F (D<), gives the homogeneous coordinate

ring of s-th secant variety.

e We are interested in the determinantal ring k| X|, where X = (z;;), an m by

n matrix of variables over & or a m by m symmetric matrix of variables over k.

e We focus on the ideal generated by the 2 by 2 minors of the above two

matrices.

Known Fact:
Let k£ be a field of characteristic zero, and let [ = I5(X) in R = k[X].
The defining ideal /=°~ of the s-th secant variety of V(I) is I o(X).




e For s +2 > m, we have [~°~ =0, i.e. F(D<*") = k[X], hence

Y Qs k: k[ X] - F(ID<*") is an isomorphism.

Proposition
If 7(D<*>) = k[X| then we have the R(D<*"'>) = Sym(D~**1>).

e With the fact and the proposition, two questions are raised:

Question 1: Is R(D~*") = Sym(D<*")? ,
i.e. what is the minimal s such that R(D~*”) = Sym(D~*~)?

Question 2: If the equality does not hold for s, can we find the defining

equations of R(D<*~)?

What are properties of R(D~*") ?




Theorem 1 [-]
We give the defining equations of R(D<*") for the 2 by 2 minors of an m by

n matrix of variables for m < n or m by m symmetric matrix of variables

for m < 5.

Moreover R(D<!*) is Cohen-Macaulay for the case of m by n matrix of

variables.

With Theorem 1, we recover what the Rees algebra of D<*" is, i.e. we get

information about the blow up, not just the special fiber of the blowup.



1. Defining equations of Rees

Algebra

e For the D diagonal ideal of S

o write X = |v;,], Y = |y;|, T = [t;]

e m by n matrices, m <n

o S =k[X,Y|/(1,(X), ,(Y)), u1 > uy and

Sl i>Sm” > D > (.

0 — (image(¢)) = J — Sym(S™") = S|T] — Sym(D) — 0.




e J is the ideal generated by the entries of the row vector

[t117t127 ...,tln, ----;tmn] . qb

Sym(ID) = S[T]/J.

e We can see that J is generated by linear forms in the variables ?;;.
e We write R(D) = S|T|/K, J C K.
e In general K is not generated by linear forms.

e When I,,(X) = I,(X), F(D<**) = S[T]/I,:s(T) .



Theorem 2 [-]
R(D<*") = S[T]/K where K = (J,L,I;,5(T)), when X is a m by n matrix of

variables with m < n or m by m symmetric matrix of variables with m < 5.

Moreover R(D<!*) is Cohen-Macaulay for the case of m by n matrix of

variables.

e Here L is an ideal not contained in J.

Proof:
e Use induction on the size of matrix.

e Find a non zero-divisor of S|T|/K then localize at it to get to a smaller case.

e We compute the Groebner basis of ' and we get the initial ideals. This

way, we find the non zero-divisor.

10



Example: Let 2=u;, <m =3 =n.

e Write R(D<**) = S[T]/K = k[X,Y,T]/K. Then

K = (I3(X), L(Y),
L11 X12 213
to1 ta o3
Y31 Ys2 Ys3

11 L12 I13

to1 too 193

t31 132 t33

ik

Tij — Yij Lik — Yik

Z11
X1

31

11
Y21

131

12 T13
22 T23

t32 133

t12 13
Y22 Y23

{32 133

11
o1

Y31

11

t12 T13
too to3

Y32 Y33




and

l"(/C) = (563133225613, Y21Y12, Y21Y13, Y22Y13, Y31Y12, Y31Y13, Y31Y22, Y31Y23, Y32Y13, Y32Y23,
139733, 131732, 131233, L2333, L2332, L23231, L23T22213Y31, 123L22T13Y11Y32,
1930220 13Y11Y33, 123L22T13Y21Y32, L23T22213Y21Y33, L22L33, L2232, 122231,

192223, 1220220 13Y31, 1220220 13Y11Y32, 122022X13Y11Y33, 122X22T13Y21Y32,
199T2213Y21Y33, 121233, t21232, 21231, 21222, 12123, 121T13T21Y32,
191213221Y12Y33, 121213T21Y22Y33, 121213Y32, 121213Y12Y33, 121213Y22Y33,

113233, 113232, 113731, 113223, 13222, 113T21,

t12233, 12232, 112231, L12221, t12%22, t12%23, 112213,

t11731, t11732, t11T33, t11T21, 1109, t11T03, t11T12, L1113, T11to0y33)-
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2. Cohen-Macaulayness of Rees

Algebra

Theorem 3 [-]

R(D<!*) is Cohen-Macaulay for the case of m by n matrix of variables.

e To show Cohen-Macaulayness, we notice that the initial ideals of the
defining ideal of the Rees algebra are square-free monomial ideals. Once we

show the initial ideal is Cohen-Macaulay then we have the defining ideal is

Cohen-Macaulay.

Definition: [ is a square-free monomial ideal of

R =k|zy,....,xzy) and I = (f1,..., fi), then the Alexander dual ideal /" of I is N; P,

, where for any square-free monomial f =xz; ---xz;, P;= (z;,..., ;).
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Example: Let [ = (ab, bc, cd) C kla, b, c,d], then
I =(a,b)N(b,c)N(c,d) = (ac,be, bd).

Theorem 4 [Eagon-Reiner]

R/I is Cohen-Macaulay < [* has a linear free resolution.

e With Theorem 4, we just need to show that (in(£))*, the Alexander dual

ideal of in(L), has a linear free resolution. This will give us the

Cohen-Macaulayness of R(D<*").

Definition: Let

F:.. > E E—l > FO

be a minimal homogeneous free resolution of a graded module )M over a ring

R = klzy, ..., x,] with F; = &, R(—a;;).
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e The regularity of M, reg()) = max;{a;; —i}.

Notice
If all of the minimal homogeneous generators of / have the same degree

d, then [ has a linear free resolution < reg(/) = d.

Lemma 5
The Alexander dual ideal (in(L£))* of (in(L))is generated in

degree d and d = reg((in(£))*) , i.e. (in(£))* has a linear free resolution.

e There exists a filtration of (in(£))* such that the quotients are linear.

We use this filtration to prove Lemma 5.
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Theorem 1 [-]

We give the defining equations of R(D~*) for 2 by 2 minors of m by n

matrix of variables or m by m symmetric matrix of variables with m < 5.

Moreover R(D<!”) is Cohen-Macaulay for the case of m by n matrix of

variables.

e The next step is to work on any m and any size minors.

Conjecture 1

For the case of symmetric matrix, R(ID<°~) has very similar structor as the

case of m by n matrix of variables.
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Conjecture 2

R(D<*~) is Cohen-Macaulay.
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