Enumerations deciding the weak Lefschetz property

David Cook II (dcook@ms.uky.edu), Uwe Nagel (uwe.nagel@uky.edu)

Part of the work for this poster was done while the authors were partially supported by the National Security Agency under Grant Number H98230-09-1-0032.

An artinian K-algebra A is said to have the **weak Lefschetz property** if there exists a linear form ℓ such that, for all integers d, the map

$$\times \ell: [A]_d \to [A]_{d+1}$$
 has maximal rank. In this case, a

form ℓ is called a **Lefschetz**

element of A.

Consider $I=(x^a,y^b,z^c,x^\alpha y^\beta z^\gamma)$ R=K[x,y,z]. We associate to

in R=K[x,y,z]. We associate to I the following **punctured hexagon**:

By Lindström-Gessel-Viennot Theorem the enumeration of signed lozenge tilings of this region is given by

$$D := \det_{1 \le i, j \le C + M} \begin{cases} \binom{c}{A + j - i} & \text{if } 1 \le i \le C, \\ \binom{\gamma}{A + C - \beta + j - i} & \text{if } C + 1 \le i \le C + M. \end{cases}$$

Theorem: R/I has the weak Lefschetz property iff $D \not\equiv 0 \mod \operatorname{char} K$.

When the puncture is **gravity- central**, the ideal is **level**.

This corresponds to a case
studied in both [MMN]
Several cases
correspond to tilings
of *unpunctured* hexagons
and so are enumerated by

MacMahon's formula:

$$\operatorname{Mac}(a, b, c) := \frac{\mathcal{H}(a)\mathcal{H}(b)\mathcal{H}(c)\mathcal{H}(a+b+c)}{\mathcal{H}(a+b)\mathcal{H}(a+c)\mathcal{H}(b+c)},$$

where $\mathcal{H}(n) = \prod_{i=0}^{n-1} i!$ is the **hyperfactorial** of n.

The case M=0 degenerates to the complete intersection case studied in [CN-09], [LZ], and [CGJL].

When $\gamma=0$, then the determinant can be computed explicitly using a product of Mahonian determinants and hyperfactorials. $\gamma=0$

When the puncture has even side-length, i.e., M is even, then all lozenge tilings of the punctured hexagon have the same sign. This establishes the weak Lefschetz property, in characteristic 0, for many new cases.

Theorem: R/I has the weak Lefschetz property in characteristic 0, if M is even.

Consider a punctured hexagon symmetric about a median of the outer triangle, i.e., A=B and $\alpha=\beta$.

Theorem: Symmetric punctured hexagons with C and M odd have D=0; that is, the associated algebra R/I never has the weak Lefschetz property.

Moreover, we have a conjecture of a closed formula for D, when C or M is even; it is a polynomial in M with only linear factors.

When $A=B=\gamma=0, \text{ then}$ D=1 and R/I always has the weak Lefschetz property, regardless of the characteristic of K.

When the puncture is axis-central, then the desired enumeration is explicitly computed in [CEKZ].

Lozenge tilings of punctured hexagons are in bijection with families of non-intersecting lattice paths on a particular lattice (the above pair are associated). The **sign of a lozenge tiling** is given by the signature of the permutation of the endpoints of the associated family of non-intersecting lattice paths.

In the case when the ideal is associated to a punctured hexagon, then deciding the presence of the weak Lefschetz property is equivalent to other problems in algebra, combinatorics, and algebraic geometry (we use results from [BK] and an undescribed connection given in [CN-11]).

Theorem: Suppose the ideal I can be associated to a punctured hexagon, then the following are equivalent:

- (i) The algebra R/I has the weak Lefschetz property;
- (ii) the Castelnuovo-Mumford regularity of R/(I,x+y+z) is s;
- (iii) the enumeration (D) of signed lozenge tilings of the punctured hexagon modulo the characteristic of K is non-zero; and
- (iv) the enumeration of signed perfect matchings of the bipartite graph associated to the punctured hexagon modulo the characteristic of K is non-zero.

If the characteristic of K is zero, then there is one further equivalent condition:

(v) The generic splitting type of syz I is (s+2, s+2, s+2).

Note that the monomial almost complete intersections *not* associated to punctured hexagons can be shown, using other arguments, to always have the weak Lefschetz property in characteristic 0.

References:

[BK] H. Brenner, A. Kaid, Syzygy bundles on \mathbb{P}^2 and the Weak Lefschetz Property, Illinois J. Math. **51** (2007), 1299–1308.

[CGJL] C. Chen, A. Guo, X. Jin, G. Liu, *Trivariate monomial complete intersections and plane partitions*, preprint (2010); available at arXiv:1008.1426.

[CEKZ] M. Ciucu, T. Eisenkölbl, C. Krattenthaler, D. Zare, Enumerations of lozenge tilings of hexagons with a central triangular hole, J. Combin. Theory Ser. A 95 (2001), 251–334.

[CN-09] D. Cook II, U. Nagel, *The weak Lefschetz property, monomial ideals, and lozenges*, preprint (2009); available at arXiv:0909.3509.

[CN-11] D. Cook II, U. Nagel, Enumerations deciding the weak Lefschetz property, preprint (2011).

[LZ] J. Li, F. Zanello, Monomial complete intersections, the weak Lefschetz property and plane partitions, Discrete Math. **310** (2010), 3558–3570.

[MMN] J. Migliore, R. Miró-Roig, U. Nagel, Monomial ideals, almost complete intersections and the weak Lefschetz property, Trans. Amer. Math. Soc. **363** (2011), 229–257.