Generalized Multiplicities and Depth of Blowup Algebras

Jonathan Montaño

Purdue University - University of Kansas

Midwest Commutative Algebra Conference at Purdue

August 5, 2015

- (R, m, k) Cohen-Macaulay (CM) local ring.
- $|k| = \infty$, dim(R) = d > 0.
- I an R-ideal.
- $J \subseteq I$ is a minimal reduction of I, i.e., $I^{n+1} = JI^n$ for some $n \in \mathbb{N}$ and J is minimal with respect to inclusion.
- $\ell(I)$ is the analytic spread of I. Recall $\mu(J) = \ell(I)$.
- $r(I) = \min\{n \mid I^{n+1} = JI^n$, for some minimal reduction $J\}$, the reduction number of I.

MULTIPLICITIES

If *I* is m-primary,

$$e(I) = \lim_{n \to \infty} \frac{(d-1)!}{n^{d-1}} \lambda_R(I^n/I^{n+1})$$
$$= \lim_{n \to \infty} \frac{d!}{n^d} \lambda_R(R/I^n)$$

is the Hilbert-Samuel multiplicity of I.

If I is not \mathfrak{m} -primary, then

$$\lambda_R(I^n/I^{n+1}) = \infty$$
, and $\lambda_R(R/I^n) = \infty$

Generalized multiplicities

We use

$$\mathsf{H}^{\mathsf{0}}_{\mathfrak{m}}(M) = \mathfrak{0} :_{M} \mathfrak{m}^{\infty},$$

the 0*th*-local cohomology of the *R*-module *M*, the largest finite length submodule of *M*.

We obtain:

$$j(I) = \lim_{n \to \infty} \frac{(d-1)!}{n^{d-1}} \lambda_R \big(\operatorname{H}^0_{\mathfrak{m}}(I^n/I^{n+1}) \big),$$

the *j*-muliplicity of *I* (Achilles-Maneresi, 1993).

$$\varepsilon(I) = \limsup_{n \to \infty} \frac{d!}{n^d} \lambda_R \big(\operatorname{H}^0_{\mathfrak{m}}(R/I^n) \big),$$

the ε -muliplicity of *I* (Ulrich-Validashti, 2011).

The limit exists when R is analytically unramified (Cutkosky, 2014).

- $\ \, \textbf{\textit{j}}(I) \in \mathbb{Z}_{\geqslant 0}.$
- **2** $\varepsilon(I)$ can be irrational (Cutkosky-Hà-Srinivasan-Theodorescu, 2005).

- If *I* is m-primary $\Rightarrow j(I) = \varepsilon(I) = e(I)$.

j-multiplicity:

- Intersection theory (Achilles-Manaresi, 1993).
- Numerical criterion for integral dependence (Rees' Theorem): If $J \subseteq I$, then

 $I \subseteq \overline{J} \Leftrightarrow j(I_{\mathfrak{p}}) = j(J_{\mathfrak{p}}), \forall \mathfrak{p} \in \text{Spec } R \text{ (Flenner-Manaresi, 2001).}$

• Conditions for Cohen-Macaulayness of blowup algebras (Polini-Xie, 2013), (Mantero-Xie, 2014), (M, 2015).

ε -multiplicity:

- Rees' Theorem for ideals and modules (Ulrich-Validashti, 2011).
- Equisingularity Theory (Kleiman-Ulrich-Validashti).

COMPUTING GENERALIZED MULTIPLICITIES

(with Jack Jeffries and Matteo Varbaro)

Despite their importance, the generalized multiplicities are not easy to compute.

The following formula expresses the *j*-multiplicity as the length of a module:

$$j(I) = \lambda_R \left(\frac{R}{(a_1, a_2, \dots, a_{d-1}) : I^{\infty} + (a_d)} \right)$$

for a_1, a_2, \ldots, a_d general elements in *I*. (Achilles-Manaresi 1993, Xie 2012)

The ε -multiplicity has a better behavior than the *j*-multiplicity in some aspects, but it is harder to compute.

Goal: Compute generalized multiplicities for large classes of ideals.

Let $R = k[x_1, x_2, ..., x_d]$ and let I be a monomial ideal minimally generated by $\mathbf{x}^{\mathbf{v}_1}, \ldots, \mathbf{x}^{\mathbf{v}_n}$, where $\mathbf{x}^{\mathbf{v}} = x_1^{v_1} \cdots x_d^{v_d}$ if $\mathbf{v} = (v_1, \ldots, v_d)$.

The Newton polyhedron of *I* is defined to be the following convex region:

$$\operatorname{conv}(I) := \operatorname{conv}(\mathbf{v}_1, \ldots, \mathbf{v}_n) + \mathbb{R}^d_{\geq 0}.$$

We have $\mathbf{x}^{\mathbf{v}} \in \overline{I}$ if and only if $\mathbf{v} \in \operatorname{conv}(I)$.

Assume *I* is m-primary (i.e., *I* contains pure powers on each variable). Then $\operatorname{covol}(I) := \operatorname{vol}(\mathbb{R}^d_{\geq 0} \setminus \operatorname{conv}(I))$ is finite.

Theorem (Teissier, 1988)

Let I be an m-primary monomial ideal, then

 $e(I) = d! \operatorname{covol}(I).$

Example

The following picture corresponds to the ideal $I = (x^7, x^2y^2, xy^5, y^6)$.

conv(I) is the yellow region., and covol(I) is the volume of the green region.

$$e(I) = 2! \operatorname{covol}(I) = 26.$$

The *j*-multiplicity of monomial ideals

Let I be an arbitrary monomial ideal (not necessarily m-primary).

If $\{P_1, \ldots, P_b\}$ are the bounded faces of dimension d-1 of conv(1), we call the region

$$\operatorname{pyr}(I) = \bigcup_{i=1}^{b} \operatorname{conv}(P_i, 0),$$

the pyramid of *I*.

Theorem (Jeffries-M, 2013)

 $j(I) = d! \operatorname{vol}(\operatorname{pyr}(I)).$

Example

The following picture corresponds to the ideal $I = (xy^5, x^2y^3, x^3y^2)$.

conv(I) is the yellow region., and pyr(I) is the green region.

$$j(I) = 2! \operatorname{vol}(\operatorname{pyr}(I)) = 6$$

The ε -multiplicity of monomial ideals

Let $H_i = \{x \in \mathbb{R}^n \mid \langle x, b_i \rangle = c_i\}$, with $b_i \in \mathbb{Q}^d$, $c_i \in \mathbb{Q}$ for i = 1, ..., w be the supporting hyperplanes of conv(1) such that

$$\operatorname{conv}(I) = H_1^+ \cap H_2^+ \cap \cdots \cap H_w^+.$$

Assume that H_1, \ldots, H_u , are the hyperplanes corresponding to unbounded facets and define

$$\operatorname{out}(I) = (H_1^+ \cap \cdots \cap H_u^+) \cap (H_{u+1}^- \cup \cdots \cup H_w^-).$$

Theorem (Jeffries-Montaño, 2013)

 $\varepsilon(I) = d! \operatorname{vol}(\operatorname{out}(I)).$

Example

Let following picture corresponds to the ideal $I = (y^4, x^2y, xy^2)$.

pyr(I) is the green region and out(I) is the portion of the green region that lies above the dotted line.

$$j(I) = 2! \operatorname{vol}(\operatorname{pyr}(I)) \qquad \varepsilon(I) = 2! \operatorname{vol}(\operatorname{out}(I)) \\ = 7 \qquad = 5$$

Notice covol(I), vol(pyr(I)), and, vol(out(I)) coincide when I is m-primary. Therefore, our theorems are generalizations of Teissier's theorem. Consider the following matrix in $m \cdot n$ different variables $\{x_{i,j}\}$, where $1 \leq i \leq m$, $1 \leq j \leq n$, and $m \leq n$.

$$\boldsymbol{A} = \begin{pmatrix} x_{1,1} & \dots & x_{1,n} \\ \vdots & & \vdots \\ x_{m,1} & \dots & x_{m,n} \end{pmatrix}$$

Let I_t for $t \leq m$ be the ideal of the polynomial ring $R = k[\{x_{i,j}\}]$ generated by all the *t*-minors of *A*.

Generalized multiplicities of determinantal ideals

Theorem (Jeffries-M-Varbaro, 2015)

Let

$$c = \frac{(mn-1)!}{(n-1)!(n-2)!\cdots(n-m)!\cdots m!(m-1)!\cdots 1!}$$

Then, (i)

 $j(I_t) = ct \int\limits_{\substack{[0,1]^m \ \sum z=t}} (z_1 \cdots z_m)^{n-m} \prod_{1 \leqslant i < j \leqslant m} (z_j - z_i)^2 \,\mathrm{d}
u$;

$$\varepsilon(I_t) = \operatorname{cmn}_{\substack{[0,1]^m \\ \max_i\{z_i\}+t-1 \leqslant \sum z \leqslant t}} \prod_{1 \leqslant i < j \leqslant m} (z_j - z_i)^2 \, \mathrm{d}z;$$

These integrals can be computed using the package NmzIntegrate of Normaliz.

Consider positive integers $a_1 \leq \cdots \leq a_r$, and set $N = \sum_{i=1}^r a_i + r - 1$. The rational normal scroll associated to this sequence is the projective subvariety of \mathbb{P}^N , defined by the ideal

$$I = I(a_1, \ldots, a_r) \subseteq K[\{x_{i,j}\}_{1 \leqslant i \leqslant r, 1 \leqslant j \leqslant a_i+1}]$$

generated by the 2-minors of the matrix

$$\begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,a_1} & \cdots & x_{r,1} & x_{r,2} & \cdots & x_{r,a_r} \\ x_{1,2} & x_{1,3} & \cdots & x_{1,a_1+1} & \cdots & x_{r,2} & x_{r,3} & \cdots & x_{r,a_r+1} \end{pmatrix}$$

The *j*-multiplicity of rational normal scrolls

Theorem (Jeffries-M-Varbaro, 2015)

 $j(I(a_1,\ldots,a_r)) =$

$$\begin{cases} 0 & \text{if } c < r+3, \\ 2 \cdot \left(\binom{2c-4}{c-2} - \binom{2c-4}{c-1} \right) & \text{if } c = r+3, \\ 2 \cdot \left(\sum_{j=2}^{c-r-1} \binom{c+r-1}{c-j} - \binom{c+r-1}{c-1} (c-r-2) \right) & \text{if } c > r+3. \end{cases}$$

Example

۲

$$I(4) = I_2 \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ x_2 & x_3 & x_4 & x_5 \end{pmatrix}$$

Here c = 4 and r = 1, c = r + 3 therefore

$$j(I(4)) = 2 \cdot \left(\begin{pmatrix} 4 \\ 2 \end{pmatrix} - \begin{pmatrix} 4 \\ 3 \end{pmatrix} \right) = 4.$$

۹

$$j(I(3,2)) = j\Big(I_2\begin{pmatrix}x_1 & x_2 & x_3 & x_5 & x_6\\x_2 & x_3 & x_4 & x_6 & x_7\end{pmatrix}\Big) = 10.$$

These examples had been computed by Nishida-Ulrich in 2010 using residual intersection theory and some intricate computations.

Binomial ideals form another class of ideals with combinatorial structure.

Problem: Compute the generalized multiplicities of binomial ideals.

One may consider first ideals I defining numerical semigroup rings, i.e.,

$$k[[x_1,\ldots,x_d]]/I \cong k[[t^{a_1},\ldots,t^{a_d}]]$$

for some positive integers $a_1 < \cdots < a_d$.

We know $\ell(I) = d$ if I is not a complete intersection (Cowsik-Nori, 1976). Hence $j(I) \neq 0$.

Nishida-Ulrich gave a explicit formula for j(I) in the case d = 3.

MINIMAL MULTIPLICITIES AND DEPTH OF BLOWUP ALGEBRAS

Blowup algebras

•
$$\mathcal{R}(I) = R[It] = \bigoplus_{n \ge 0} I^n t^n$$
, the Rees algebra of I .

•
$$\mathcal{G}(I) = \bigoplus_{n \ge 0} I^n / I^{n+1}$$
, the associated graded algebra of I .

•
$$\mathcal{F}(I) = \bigoplus_{n \ge 0} I^n / \mathfrak{m} I^n$$
, the fiber cone of I .

If S is any of these algebras, then depth $S := \operatorname{depth}_{\mathfrak{M}} S$, where $\mathfrak{M} = \mathfrak{m} + \mathcal{R}(I)_+$.

- dim $\mathcal{R}(I) = d + 1$, provided ht I > 0.
- dim $\mathcal{G}(I) = d$.
- dim $\mathcal{F}(I) = \ell(I)$.

S is CM if depth $S = \dim S$.

Question: How do the depths of the blowup algebras relate to each other?

Assume ht $I \ge 1$.

- $\mathcal{R}(I)$ is CM $\Rightarrow \mathcal{G}(I)$ is CM. (Huneke, 1982)
- " \Leftarrow " if $\sqrt{I} = \mathfrak{m}$ and r(I) < d. (Goto-Shimoda, 1982)
- " \Leftarrow " if $a(\mathcal{G}(I)) < 0$. (Ikeda-Trung, 1989)
- "⇐" if R regular. (Lipman, 1994)
- $\mathcal{G}(I)$ is not CM \Rightarrow depth $\mathcal{R}(I) =$ depth $\mathcal{G}(I) + 1$ (Huckaba-Marly, 1994)

However, in general:

- $\mathcal{F}(I)$ is CM $\not\Rightarrow \mathcal{G}(I)$ is CM.
- $\mathcal{F}(I)$ is CM $\notin \mathcal{R}(I)$ is CM.

Notions of minimal multiplicity provide conditions for strong relations among the depths of blowup algebras. They originated in Abhyankar's inequality

$$e(\mathfrak{m}) \geqslant \mu(\mathfrak{m}) - d + 1.$$

• *R* is of minimal multiplicity $\Rightarrow \mathcal{G}(\mathfrak{m})$ is CM (Sally, 77')

Sally's conjecture:

• *R* is of almost minimal multiplicity \Rightarrow depth $\mathcal{G}(\mathfrak{m}) \ge d - 1$. (Rossi-Valla, 96', Wang, 97')

Minimal multiplicities

I m-primary. Recall, $e(I) = e(J) = \lambda(R/J)$.

- $e(I) \ge \lambda(I/I^2) (d-1)\lambda(R/I)$ with equality iff $r(I) \le 1$. • *I* is of minimal multiplicity $\Rightarrow \mathcal{G}(I)$ is CM. (Valla, 1978) $\Rightarrow \mathcal{F}(I)$ is CM. (Huneke-Sally, 1988)
 - I is of almost minimal multiplicity $\Rightarrow \operatorname{depth} \mathcal{G}(I) \ge d - 1$. (Rossi, 2000)

 $e(I) \ge \mu(I) - d + \lambda(R/I)$ with equality iff $I\mathfrak{m} = J\mathfrak{m}$.

 $\begin{array}{c|c} I & J \\ I & J \\ Im \end{array}$ $\begin{array}{c|c} I \text{ is of Goto-minimal multiplicity:} \\ \mathcal{R}(I) \text{ is CM} \Leftrightarrow \mathcal{G}(I) \text{ is CM} \Leftrightarrow r(I) \leqslant 1. \text{ (Goto, 2000)} \end{array}$

• *I* is of almost Goto-minimal multiplicity: depth $\mathcal{G}(I) \ge d - 2 \Rightarrow$ depth $\mathcal{F}(I) \ge d - 1$. (Jayanthan-Verma, 2005)

Question: How can we define notions of minimal multiplicities for non- \mathfrak{m} -primary ideals?

Goal: Use the *j*-multiplicity to extend properties of minimal multiplicity to non-m-primary ideals.

Theorem (Achilles-Manaresi, Xie)

Let x_1, \ldots, x_{d-1} be d-1 general elements in I and $\widetilde{R} := R/(x_1, \ldots, x_{d-1}) : I^{\infty}$. The ideal $\widetilde{I} := I\widetilde{R}$ is $\widetilde{\mathfrak{m}}$ -primary and $j(I) = e(\widetilde{I})$.

Therefore,

$$j(I) \ge \lambda(\widetilde{I}/\widetilde{I^2})$$
 and $j(I) \ge \mu(\widetilde{I}) - 1 + \lambda(\widetilde{R}/\widetilde{I}).$

Minimal *j*-multiplicity

Polini and Xie in defined I to be of minimal *j*-multiplcity if $\ell = d$ and

$$j(I) \stackrel{}{=} \lambda(\widetilde{I}/\widetilde{I^2}),$$

and they extended the results of Rossi, Valla, and Wang. They proved:

Theorem (Polini-Xie, 2013)

Assume depth $(R/I) \ge \min\{\dim(R/I), 1\}$, and I satisfies G_d and AN_{d-2}^- . If I is of minimal j-multiplicity, then $\mathcal{G}(I)$ is Cohen-Macaulay.

Theorem (Polini-Xie, 2013)

Assume depth $(R/I) \ge \min\{\dim(R/I), 1\}$, and I satisfies G_d and AN_{d-2}^- . If I is of almost minimal j-multiplicity, then depth $\mathcal{G}(I) \ge d-1$.

When I is m-primary, one is able to reduce to lower dimensions by modding out regular sequences in I.

If I is not m-primary, the lack of the above property is a big complication if one desires to generalize results that hold in the m-primary case.

Some residual assumptions are necessary in one would like to proceed by induction on the dimension of the ambient ring.

We use Artin-Nagata properties!

Set $\ell := \ell(I)$.

I satisfies G_{ℓ} if $\mu(I_{\mathfrak{p}}) \leqslant \operatorname{ht} \mathfrak{p}$ for every $\mathfrak{p} \in V(I)$ such that $\operatorname{ht} \mathfrak{p} < \ell$.

Classes of ideals satisfying G_{ℓ} and $AN_{\ell-2}^-$:

- $\ell = ht(I)$, i.e., equimultiple ideals.
- One dimensional ideals that are generically complete intersection.
- Cohen-Macaulay ideals generated by $n \leq ht l + 2$ elements satisfying G_{ℓ} . (Avramov-Herzog)
- Perfect ideals of height two satisfying G_{ℓ} . (Apéry, Huneke)
- Perfect Gorenstein ideals of height three satisfying G_{ℓ} . (Watanabe, Huneke)
- Initial lex-segment ideals (Smith, Fouli-M).

Back to multiplicities...

We define I to be of Goto-minimal j-multiplcity if $\ell = d$ and

$$j(I) = \mu(\widetilde{I}) - 1 + \lambda(\widetilde{R}/\widetilde{I}).$$

Proposition (M, 2015)

Assume I satisfies G_d and AN_{d-2}^- , then I is of Goto-minimal j-multiplicity \Leftrightarrow Im = Jm for one (hence every) minimal reduction J of I.

This proposition is a consequence of Corso-Polini-Ulrich formula for the core.

From now on, we will assume assume *I* satisfies G_{ℓ} and $AN_{\ell-2}^{-}$.

```
Theorem (M, 2015)

Assume J \cap I^n \mathfrak{m} = JI^{n-1}\mathfrak{m} for every 2 \leq n \leq r(I), then TFAE:

(i) \mathcal{F}(I) is CM.

(ii) depth \mathcal{G}(I) \geq \ell - 1.

(iii) depth \mathcal{R}(I) \geq \ell.
```

The following corollary recovers results of Shah and Cortadellas-Zarzuela.

Corollary

If $r(I) \leq 1$ then $\mathcal{F}(I)$ is CM.

h = ht(I).

Theorem (M, 2015)

Assume Im = Jm, consider the following statements:

(i)
$$\mathcal{R}(I)$$
 is CM,
(ii) $\mathcal{G}(I)$ is CM,
(iii) $\mathcal{F}(I)$ is CM and $a(\mathcal{F}(I)) \leq -h+1$,
(iv) $r(I) \leq \ell - h + 1$.
Then (i) \Leftrightarrow (ii) \Rightarrow (iii) \Rightarrow (iv).

If in addition depth $R/I^j \ge d - h - j + 1$ for every $1 \le j \le \ell - h + 1$, then all the statements are equivalent.

Examples

The monomial ideals

$$I = (x_1^2, x_1 x_2, \dots, x_1 x_d, x_2^2, x_2 x_3, \dots, x_2 x_n)$$

for $n \ge 3$ in the ring $k[[x_1, \ldots, x_d]]$ are lex-segment ideals of height 2, and satisfy G_d and AN_{d-2}^- . *I* is of Goto-minimal *j*-multiplicity and $\mathcal{G}(I)$ is CM, then by Theorem 1 the algebras $\mathcal{R}(I)$ and $\mathcal{F}(I)$ are CM as well.

2 Let
$$R = k[[x, y, z, w]]$$
 and

$$M = \begin{pmatrix} x & y & z & w \\ w & x & y & z \end{pmatrix}.$$

The ideal $I = I_2(M)$ is CM with h = 3, $\ell = 4$, and satisfies G_4 and AN_2^- . I is of Goto-minimal *j*-multiplicity and $r(I) \leq 2$, then by Theorem 2 the algebras $\mathcal{R}(I)$, $\mathcal{G}(I)$, and $\mathcal{F}(I)$ are CM.

Thank you!

- J. Jeffries and J. Montaño, *The j-multiplicity of monomial Ideals*, Math. Res. Lett. **20** (2013), 729–744.
- J. Jeffries, J. Montaño, and M. Varbaro *Multiplicities of classical varieties*, Proc. London Math. Soc. **110** (2015), 1033–1055.
- J. Montaño, Artin-Nagata properties, minimal multiplicities, and depth of fiber cones, J. Algebra 425 (2015), 423–449.