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o (R, m, k) Cohen-Macaulay (CM) local ring.

@ |k| =00, dim(R) =d > 0.

o [/ an R-ideal.

@ J C I is a minimal reduction of I, i.e., I"t1 = JI" for some n € N and J is
minimal with respect to inclusion.

@ /(1) is the analytic spread of /. Recall u(J) = ¢(1).

o r(1) = min{n| /™! = JI", for some minimal reduction J}, the reduction
number of /.

Jonathan Montafio (PU-KU) Generalized Multiplicities August 5, 2015



MULTIPLICITIES

athan Montafio (PU Generalized Multiplicities



Hilbert-Samuel multiplicity

If I is m-primary,

d— l)l )\R(In//n+1)

— im
e(l) - nll>ngo nd*:l
=1 d!>\ R/I
= Jfim g = (R/17)
is the Hilbert-Samuel multiplicity of /.

If I is not m-primary, then

Ar(1"/1"1) = 00, and Ag(R/I") = oo
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Generalized multiplicities

We use
H2 (M) =0 :y m™,

the Oth-local cohomology of the R-module M, the largest finite length submodule
of M.

We obtain:

() = tim 2 (1, (7/1m1)).

the j-muliplicity of I (Achilles-Maneresi, 1993).

(1) = imsup e (HA(R/17).

nd
the e-muliplicity of I (Ulrich-Validashti, 2011).

The limit exists when R is analytically unramified (Cutkosky, 2014).
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Some properties

Q j(I) € Zxo.

@ ¢(/) can be irrational (Cutkosky-Ha-Srinivasan-Theodorescu, 2005).
Q@ j(N>0s¢e(l)>0« LI)=d.

Q () <j(h).

Q If I 'is m-primary = j(I) =¢(I) = e(/).
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Applications

Jj-multiplicity:
o Intersection theory (Achilles-Manaresi, 1993).

o Numerical criterion for integral dependence (Rees’ Theorem):
If JC [/, then

I CJ < j(ly)=j(Jp), Vp € Spec R (Flenner-Manaresi, 2001).

e Conditions for Cohen-Macaulayness of blowup algebras (Polini-Xie, 2013),
(Mantero-Xie, 2014), (M, 2015).

e-multiplicity:
@ Rees’ Theorem for ideals and modules (Ulrich-Validashti, 2011).
o Equisingularity Theory (Kleiman-Ulrich-Validashti).
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COMPUTING GENERALIZED MULTIPLICITIES

(with Jack Jeffries and Matteo Varbaro)
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Computability

Despite their importance, the generalized multiplicities are not easy to compute.

The following formula expresses the j-multiplicity as the length of a module:

. R
i) = ((31,22,~-~73d—1) 1+ (ad))

for ai, as, ..., ag general elements in /. (Achilles-Manaresi 1993, Xie 2012)

The e-multiplicity has a better behavior than the j-multiplicity in some aspects, but
it is harder to compute.

Goal: Compute generalized multiplicities for large classes of ideals.
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Teissier's Theorem

Let R = k[x1,x2,...,X4] and let | be a monomial ideal minimally generated by
ifv=(va,. .., vg).

XY, ..., x¥, where x¥ = x;* -+ - X

The Newton polyhedron of / is defined to be the following convex region:
conv(/) := conv(vy, ...,v,) + R‘;O.

We have x¥ € [ if and only if v € conv(/).

Assume | is m-primary (i.e., | contains pure powers on each variable). Then

covol(/) := vol (R’;o \ conv(/)) is finite.

Theorem (Teissier, 1988)

Let | be an m-primary monomial ideal, then

e(l) = d! covol().

Jonathan Montafio (PU-KU) Generalized Multiplicities August 5, 2015 10 / 36



The following picture corresponds to the ideal | = (x7, x2y?, xy5, y°).

(0.6)

15

\2)

(7.0

conv(/) is the , and covol(/) is the volume of the green region.

e(l) = 2! covol(/)
= 26.
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The j-multiplicity of monomial ideals

Let / be an arbitrary monomial ideal (not necessarily m-primary).

If {P1,..., Pp} are the bounded faces of dimension d — 1 of conv(/), we call the
region

b
pyr(1) = | conv(P;,0),
i=1

the pyramid of /.

Theorem (Jeffries-M, 2013)
j(I) = d'vol(pyr(1)). J
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The following picture corresponds to the ideal | = (xy®°, x?y3, x3y?).

conv(/) is the , and pyr(/) is the green region.

Jjih = 2!vo|(pyr(/))
=6
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The e-multiplicity of monomial ideals

Let H; = {x € R" | (x, b;) = ¢;}, with b; € Q9, ; € Q for i = 1,...,w be the
supporting hyperplanes of conv(/) such that

conv(l)=H NHy Nn---NHL.

Assume that Hs, ..., H,, are the hyperplanes corresponding to unbounded facets
and define

out(/) = (H{ N---NHI)N(H, ,U---UH,).

Theorem (Jeffries-Montaiio, 2013)
e(1) = d!vol(out(/)). }
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Example

Let following picture corresponds to the ideal | = (y*, x%y, xy?).

pyr(/) is the green region and out(/) is the portion of the green region that lies
above the dotted line.

J(1) = 21vol(pyr(1)) e(1) = 2! vol (out())
=7 =5

Notice covol(/), vol(pyr(/)), and, vol(out(/)) coincide when / is m-primary.
Therefore, our theorems are generalizations of Teissier's theorem.
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Determinantal ideals

Consider the following matrix in m - n different variables {x; j}, where 1 < i < m,
1<j<n and m<n.

A:

Xm1 .- Xm.n

)

Let /; for t < m be the ideal of the polynomial ring R = k[{x; ;j}] generated by all
the t-minors of A.
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Generalized multiplicities of determinantal ideals

Theorem (Jeffries-M-Varbaro, 2015)
Let
(mn—1)!

T =D =2) - (n—m) - ml(m— 1)1

Then,
()
iw=ct [ @z ] (g m2dv;

0.1 1<i<j<m

S z=t

e(l) = Cm”/(zl e Zy)" " H (z — z)* dz;
[0,1]" 1<i<j<m
max;{zj }+t—1<> " z<t

These integrals can be computed using the package Nmzlntegrate of Normaliz.
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Rational normal scrolls

Consider positive integers a; < -+ < a,, and set N = Zle ai+r—1. The
rational normal scroll associated to this sequence is the projective subvariety of
PV, defined by the ideal

I'=1(a1,...,ar) € K[{xijhi<i<ri<i<a+il]
generated by the 2-minors of the matrix

X1,1 X12 v X120 0 Xl Xe2 ottt Xpa,
X1,2 X1,3 o Xla+1l o Xe2 Xe3 0t Xpa4l
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The j-multiplicity of rational normal scrolls

Theorem (Jeffries-M-Varbaro, 2015)
J(I(ar,...,a)) =

0 ifc<r+3,
2c—4 2c—4 .
2 (75 (<)

c—r—1
-1 -1
2. Z (c—i—r )‘(Ci_il )(C_r_z) ifc>r+3.

o
j=2 J
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Example
°
o X1 X2 X3 Xa
1(4) =k (xz X3 Xa x5)

Here c =4 and r =1, ¢ = r + 3 therefore

= (3 () -

. . X1 X2 X3 X5 Xp _
j(3,2)) = (1 <X2 oo X7>)_10.

These examples had been computed by Nishida-Ulrich in 2010 using residual
intersection theory and some intricate computations.

August 5, 2015
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Binomial ideals?

Binomial ideals form another class of ideals with combinatorial structure.
Problem: Compute the generalized multiplicities of binomial ideals.
One may consider first ideals | defining numerical semigroup rings, i.e.,

K[[x1, ..., xq]]/1 =2 Kk[[t™, ..., t%]]

for some positive integers a; < - -+ < aq.

We know ¢(1) = d if | is not a complete intersection (Cowsik-Nori, 1976). Hence

j(h) #o.

Nishida-Ulrich gave a explicit formula for j(/) in the case d = 3.
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MINIMAL MULTIPLICITIES AND DEPTH OF BLOWUP
ALGEBRAS
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Blowup algebras

e R(I) = R[lt] = @ I"t", the Rees algebra of /.

n>0
e G(I= @ I"/1"F1, the associated graded algebra of /.
n=0
o F(I)= @ 1" /ml", the fiber cone of /.
n>0

If S is any of these algebras, then depth S := depthgy, S, where 9t = m + R(/)4.

o dimR(/) =d+ 1, provided ht/ > 0.
e dimG(/) =d.
o dim F(I)=¢(1).

S is CM if depth S = dim S.
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Depths of blowup algebras

Question: How do the depths of the blowup algebras relate to each other?

Assume ht/ > 1.

R(l)is CM = G(I) is CM. (Huneke, 1982)

“<" if VI =m and r(l) < d. (Goto-Shimoda, 1982)

“<"if a(G(1)) < 0. (lkeda-Trung, 1989)

“<" if R regular. (Lipman, 1994)

G(1) is not CM = depthR(/) = depth G(/) + 1 (Huckaba-Marly, 1994)

However, in general:
o F(I)is CM % G(I) is CM.
o F(I)is CM «£ R(/) is CM.
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Minimal multiplicities

Notions of minimal multiplicity provide conditions for strong relations among the
depths of blowup algebras. They originated in Abhyankar's inequality

e(m) > pu(m)—d+1.
e R is of minimal multiplicity = G(m) is CM (Sally, 77")
Sally’s conjecture:

@ R is of almost minimal multiplicity = depth G(m) > d — 1. (Rossi-Valla, 96',
Wang, 97)
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Minimal multiplicities

I m-primary. Recall, e(l) = e(J) = A(R/J).

R el = A1) = (d — DA(R/1) with equality iff (/) < 1.
! / o I is of minimal multiplicity = G(/) is CM. (Valla, 1978)
2
" / = F(I) is CM. (Huneke-Sally, 1988)
JI

@ [ is of almost
minimal multiplicity = depthG(/) > d — 1. (Rossi, 2000)

R el = ull) — d + A(R/1) with equality iff fm = Jm.
{ J o [ is of Goto-minimal multiplicity:
N / R(!)is CM < G(I) is CM < r(I) < 1. (Goto, 2000)
Jm @ / is of almost Goto-minimal multiplicity:
depthG(/) > d —2 = depth F(/) > d — 1.
(Jayanthan-Verma, 2005)
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Jj-multiplicity

Question: How can we define notions of minimal multiplicities for non-m-primary
ideals?

Goal: Use the j-multiplicity to extend properties of minimal multiplicity to
non-m-primary ideals.

Theorem (Achilles-Manaresi, Xie)
Let x1, ..., xq—1 be d — 1 general elements in | and R:= R/(x1y vy Xd—1) = 1°°.

The ideal | := IR is @-primary and j(I) = e(]).

Therefore,

J=AI/2) and (1) = u(l) — 1+ A(R/D).
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Minimal j-multiplicity

Polini and Xie in defined / to be of minimal j-multiplcity if £ = d and

(1) = A1/ 12),

WV |

and they extended the results of Rossi, Valla, and Wang. They proved:

Theorem (Polini-Xie, 2013)

Assume depth (R/I) > min{dim(R/1),1}, and | satisfies Gg and AN, _,. If | is of
minimal j-multiplicity, then G(I) is Cohen-Macaulay.

Theorem (Polini-Xie, 2013)

Assume depth (R/1) > min{dim(R/I),1}, and | satisfies Gg and AN,_,. If | is of
almost minimal j-multiplicity, then depthG(l) > d — 1.
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Discussion: Residual assumptions

When [ is m-primary, one is able to reduce to lower dimensions by modding
out regular sequences in /.

If I is not m-primary, the lack of the above property is a big complication if
one desires to generalize results that hold in the m-primary case.

Some residual assumptions are necessary in one would like to proceed by
induction on the dimension of the ambient ring.

We use Artin-Nagata properties!
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Artin-Nagata properties: Examples

Set ¢ := ((1).
| satisfies G, if pu(ly) < htp for every p € V() such that htp < 2.

Classes of ideals satisfying Gy and AN,_,:
e ¢ =nht(/), i.e., equimultiple ideals.
@ One dimensional ideals that are generically complete intersection.

@ Cohen-Macaulay ideals generated by n < ht/ + 2 elements satisfying Gy.
(Avramov-Herzog)

o Perfect ideals of height two satisfying Gy. (Apéry, Huneke)
o Perfect Gorenstein ideals of height three satisfying Gy. (Watanabe, Huneke)

o Initial lex-segment ideals (Smith, Fouli-M).
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Goto-minimal j-multiplicity

Back to multiplicities...
We define I to be of Goto-minimal j-multiplcity if £ = d and

50 = D) = 1+ MR/

Proposition (M, 2015)

Assume | satisfies Gg and AN, _,, then

I is of Goto-minimal j-multiplicity < Im = Jm for one (hence every) minimal
reduction J of |.

This proposition is a consequence of Corso-Polini-Ulrich formula for the core.
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From now on, we will assume assume / satisfies G, and AN,_,.

Theorem (M, 2015)

Assume J N 1"m = JI""Im for every 2 < n < r(l), then TFAE:
(i) F(1) is CM.

(ii) depthG(/)

0—1.
(i) depthR(1) > ¢.

\VaR\%

The following corollary recovers results of Shah and Cortadellas-Zarzuela.

Corollary
Ifr(1) <1 then F(I) is CM. J
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h=ht(l).

Theorem (M, 2015)

Assume Im = Jm, consider the following statements:
() R(I) is CM,

(i) G(1) is CM,

(i) F(I) is CM and a(F (1)) < —h+1,

(iv) r(<e—h+1.

Then (i) < (i) = (iii)) = (iv).

If in addition depth R/lf >d—h—j+1foreveryl <j<{l—h+1, then all the
statements are equivalent.

4
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@ The monomial ideals
I = (X2, X1X0, . .., X1Xd, X3, X0X3, . . . , XoXp)
for n > 3 in the ring k[[x, ..., x4]] are lex-segment ideals of height 2, and

satisfy Gy and AN, _,. I is of Goto-minimal j-multiplicity and G(/) is CM,
then by Theorem 1 the algebras R(/) and F(/) are CM as well.

Q Let R=K][[x,y,z,w]] and

M_(xyzw)'
w o x y z

The ideal | = L(M) is CM with h = 3, ¢ = 4, and satisfies G, and AN, . | is
of Goto-minimal j-multiplicity and r(/) < 2, then by Theorem 2 the algebras
R(1), G(I), and F(I) are CM.
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Thank you!
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