Please, be neat and show all your work; circle your answer.

🜲 Good Luck 🌲

Problem Number	Possible Points	Points Earned	Problem Number	Possible Points	Points Earned
1.	6		11.	6	
2.	6		12.	6	
3.	6		13.	6	
4.	6		14.	6	
5.	6		15.	6	
6.	6		16.	6	
7.	6		17.	6	
8.	6		18.	6	
9.	6		19.	6	
10.	6		20.	6	
			TOTAL	out of 100	

$\begin{array}{c c} \mathbf{Angle} \ \varphi \\ \swarrow & \searrow \\ \mathbf{degrees} & \mathbf{radians} \end{array}$		$\cos arphi$	$\sin arphi$	an arphi
0°	0	1	0	0
30°	$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	0	1	_

Noteworthy values of trigonometric functions

The addition and subtraction formula

- $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
- $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$

•
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

Double angle identities

- $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha$
- $\sin 2\alpha = 2\sin \alpha \cos \alpha$

•
$$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$$

Half-angle identities

•
$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

• $\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$

•
$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$

where the choice of the sign is determined by the quadrant in which the angle $\alpha/2$ is located.

1. Let A(3, -2) and B(-3, 1). Write an equation for all points P(x, y) such that

 $(dist(A, P))^2 = (dist(B, P))^2 + 1$

2. Find *b* such that the line 3x + by + 2 = 0 has *y*-intercept 1/2.

3. Write an equation for the circle such that the points A(6,0) and B(0,8) are endpoints of a diameter.

pts: /6

4. Let $f(x) = x^2 - 6x + 8$. Sketch the graph of y = f(x) using the method of completing the squares. Indicate the *x*- and *y*-intercepts as well as the coordinates of the vertex of the parabola.

5. Sketch the graph of

$$f(x) = \frac{x^2 - 5x + 4}{x^2}$$

Indicate domain, horizontal and vertical asymptotes, *x*- and *y*-intercepts, sign variation, etc...

6. Find the domain of

$$F(x) = \sqrt{\frac{1-2x}{3x+2}}.$$

7. For $f(x) = -2x^2 + 7x - 1$, find the difference quotient

$$\frac{f(a+h) - f(a)}{h}.$$

8. Find the inverse of

$$f(x) = \sqrt{3 - x}.$$

Plot both the graph of f(x) and the one of $f^{-1}(x)$ on the same coordinate plane. State the domain and the range of both functions.

9. Find the value of *x* for which:

$$\log_{3/2} x = 4;$$
 $4^x = 64;$ $\log_x(\log_4 256) = 2$

pts: /6

10. The formula

$$p(h) = 14.7 \, e^{-0.12h}$$

gives the atmospheric pressure in pounds per square inch at an altitude of h miles above sea level. At what altitude will the atmospheric pressure be one half of the sea level pressure?

11. Solve the logarithmic equation

$$\log_3(\log_2(x+3)) = \log_3(\log_2(4x-3))$$

pts: /6

12. (*a*) Write in a single expression the following

$$4\log_3(x+1) - 2\log_3(x-1) - \frac{1}{2}\log_3(x+3).$$

 $(b)\,$ Write the following

$$\log \sqrt{\frac{x^2(x+1)^3}{(x+2)^5}}$$

in terms of $\log x$, $\log(x + 1)$ and $\log(x + 2)$.

13. If a central angle of 30° is subtended by a circular arc of length 12 meters, find the radius of the circle and the area of the sector.

14. If $\tan \theta = 4$ and $\sin \theta < 0$, find the remaining 5 trigonometric functions.

15. Find the amplitude, period and phase shift of

$$y = -2\sin(2(x - \pi/3)).$$

Graph the function and label the x- and y-intercepts.

16. (*a*) Verify the identity

$$\sec u = \frac{\cos u}{1 + \sin u} + \tan u$$

 $(b)\ \mbox{Compute the exact value of}$

$$\frac{\cos(\pi/3)}{1+\sin(\pi/3)} + \tan(\pi/3).$$

17. Solve the equation

$$\sin(2u) - \sqrt{3}\cos u = 0.$$

in the interval $[0, 2\pi]$.

18. Solve the triangle ABC if

$$\beta = 60^{\circ} \qquad \gamma = 45^0 \qquad a = 8.$$

19. Two joggers starting from the same point run along two directions that make an angle of 30°. One of them runs at 8mph and the other at 10mph. How far will they be after 2 hours?

pts: /6

20. If α and β are acute angles such that $\csc \alpha = 13/12$ and $\cot \beta = 4/3$, find

- (a) $\sin(\alpha + \beta)$
- (b) $\tan(\alpha + \beta)$
- (c) the quadrant containing $\alpha + \beta$.

