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From simple to complex and intricate

• Ancient Greeks were enthralled by the symmetries, the
visual beauty, and the logical structure of geometry.

• Particularly intriguing was the manner in which the
simple and elementary could serve as foundation for
the complex and intricate.

• This enchantment with building the complex from the
simple was also evident in the Greeks’ geometric
constructions.
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Rules of the “game”!

• The rules of the game required that all constructions be
done only with compass and (unmarked) straightedge

• These two fairly unsophisticated tools—allowing the
geometer to produce the most perfect, uniform
one-dimensional figure (the straight line) and the most
perfect, uniform two-dimensional figure (the circle)—
must have appealed to the Greek sensibilities for order,
simplicity and beauty.

• Moreover, these constructions were within reach of the
technology of the day.
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The notion of quadrature

• These seemingly unsophisticated tools can produce a
rich set of constructions (from the bisection of lines and
angles, to the drawing of parallels and perpendiculars,
to the creation of regular polygons of great beauty).

• A considerably more challenging problem in ancient
Greece was that of the quadrature of a plane figure.

• The quadrature (or squaring) of a plane figure is the
construction—using only compass and straightedge—of
a square having area equal to that of the original figure.
If this is the case, the figure is said to be quadrable (or
squarable). – p. 4/27



Quadrature of the rectangle

Let ABCD an arbitrary rectangle.
We must construct, with compass
and straightedge only, a square
having area equal to that of ABCD

•
OA

B

D

C

E F

GH

Extend line AD to the right, and use the compass to mark
off segment DE with length equal to that of CD.

Bisect AE at O, and with center O and radius AO = EO,
describe a semicircle as shown.

At D, construct line DH perpendicular to AE, where H is the
point of intersection of the perpendicular and the semicircle.

Construct the “desired” square ... DFGH.
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Proof of claim

Why does the square DFGH
have the same area as
the rectangle ABCD?

•
OA

B

D

C

E F

GH

a

b

c

Set a, b, c to be the lengths of segments OH, OD and DH.

Pythagoras theorem gives us that a2
− b2 = c2.

Observe that: DE = CD = a − b and AD = a + b.

It follows that:

Area (rectangle ABCD) = AD × CD

= (a + b)(a − b) = a2
− b2

= c2 = Area (square DFGH)
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Quadrature of the triangle

Given a triangle ABC, construct
a perpendicular from C meeting
AB at point H.

•

HA B

DE

C

M

We know that the area of the triangle ABC is 1

2
AB × CH.

If we bisect CH at M and construct a rectangle ABDE with
DB = EA = MH, we obtain a rectangle with the same area
as the triangle ABC.

But we already have seen how to square a rectangle.
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Quadrature of the polygon

Given a general polygon we can
subdivide it into a collection of n
triangles, by drawing diagonals (eg n=3).

A1

A2 A3

A B

C

D

E

Now, triangles are quadrable.

We can construct squares with sides
a1, a2, a3 and areas A1, A2, A3.

Construct a right triangle with legs a1, a2

and hypotenuse d1. Next construct a triangle

a1

a2

a3

d1

d2

with legs d1, a3 and hypotenuse d2. We have:

d2

2
= d2

1
+ a2

3
= (a2

1
+ a2

2
) + a2

3
= A1 + A2 + A3.
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Quadrature of the polygon (cont.ed)

• Obviously, this procedure can be adapted to the
situation in which the polygon is divided into any
number of triangles.

• By analogous techniques, we could likewise square a
figure whose area is the difference between two
squarable areas.
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Rectilinear vs curvilinear figures

• With the previous techniques, the Greeks of the 5th
century BC could square wildly irregular polygons.

• But this triumph was tempered by the fact that such
figures are rectilinear.

• What about the issue of whether figures with curved
boundaries (curvilinear figures) were also quadrable?

• Initially, this must have seemed unlikely, for there is no
obvious means to straighten out curved lines with
compass and straightedge.
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Three famous problems from antiquity

• The trisection of the angle; that is, the problem of
dividing a given angle into three equal parts.

• The duplication of the cube; that is, to find the side of a
cube of which the volume is twice that of a given cube
(the so-called Delian problem).

• The quadrature of the circle; that is, to find the square of
an area equal to that of a given circle.
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Hippocrates of Chios (470-410 BC)

• While a talented geometer, Aristotele wrote of him that
he “...seemed in other respects to have been stupid and
lacking in sense.” Legend has it that Hippocrates
earned his reputation after being defrauded of his
fortune by pirates, who apparently took him for an easy
mark. Needing to make a financial recovery, he traveled
to Athens and began teaching.

• He is remembered for two important contributions:

• His composition of the first Elements.
• His quadrature of the lune.
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Hippocrates’ Elements

• He is credited (≡since nothing remains today!) with
writing the first Elements, that is, the first exposition
developing the theorems of geometry precisely and
logically from a few given axioms or postulates.

• Whatever merits his book had were to be eclipsed, over
a century later, by the brilliant Elements of Euclid, which
essentially rendered Hippocrates’ writing obsolete.

• Still, there is reason to believe that Euclid borrowed
from his predecessor, and thus we owe much to
Hippocrates for his great, if lost, treatise.
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Hippocrates’ lune

• It must have been quite unexpected when Hippocrates
of Chios succeeded (ca. 440 BC) in squaring a
curvilinear figure known as a “lune.”

• We do not have Hippocrates’ own work, but Eudemus’
account of it from around 335 BC. Even here the
situation is murky, because we do not really have
Eudemus’ account either.

• Rather, we have a summary by Simplicius from 530 AD
that discussed the writings of Eudemus.
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What is a lune?

... A lune is a plane figure bounded by two circular arcs.

For instance:

•

•

A

C

•

O

E

F
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Comments (1)

• Hippocrates did not square all such figures but a
particular lune he had carefully constructed (the one in
the previous slide!).

• His argument rested upon three preliminary results:

• The Pythagorean Theorem

• An angle inscribed in a semicircle is right.

• The areas of 2 circles or semicircles are to each
other as the squares of their diameters.
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Comments (2)

• The first two of these results were well known long
before Hippocrates. The last proposition, on the other
hand, is considerably more sophisticated.

• There is widespread doubt that Hippocrates actually
had a valid proof. He may well have thought he could
prove it, but modern scholars generally feel that this
theorem presented logical difficulties far beyond what
Hippocrates would have been to handle.

• This latter result appeared as Proposition 2 in
Book XII of Euclid’s Elements.
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Hippocrates’ Theorem

Begin with a semicircle having
center O and radius AO = OB.

•

•

A • B
D
•

C

•

O

E
F

Construct OC perpendicular to AB, with point C on the
semicircle, and draw lines AC and BC.

Bisect AC at D, and using AD as a radius and D as center
draw semicircle AEC, thus creating lune AECF, which is
shaded in the diagram.

Theorem: The lune AECF is quadrable.
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Strategy of proof

Hippocrates’ plan of attack
was simple yet brilliant.

•

•

A

C

•

O

E
F

He first had to establish that the lune in question had
precisely the same area as the shaded triangle AOC.

With this behind him he could then apply the known fact that
triangles can be squared to conclude that the lune can be
squared as well.
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The proof

Note that the angle ACB is right
since it is inscribed in a semicircle.

•

•

A • B
D
•

C

•

O

E
F

Triangles AOC and BOC are congruent, and so AC = BC.

We thus apply the Pythagorean theorem to get

AB
2

= AC
2
+ BC

2
= 2 AC

2

Then, the semicircle AEC has 1

2
area of the semicircle ACB:

Area (semicircle AEC)

Area (semicircle ACB)
=

AC
2

AB
2

=
AC

2

2 AC
2

=
1

2
.
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The proof (conclusion)

Thus, semicircle AEC has
half area of semicircle ACB.

•

•

A • B

D
•

C

•

O

E

F

Now, quadrant AFCO has 1

2
the area of semicircle ACB. So:

Area (semicircle AEC) = Area (quadrant AFCO).

Subtractring the area of their shared region AFCD leaves:

Area (semicircle AEC) - Area (region AFCD)

= Area (quadrant AFCO) - Area (region AFCD)

or

Area (lune AECF) = Area (triangle ACO)
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Epilogue

With Hippocrates’ success at squaring the lune, Greek
mathematicians must have been optimistic about squaring
the most perfect curvilinear figure, the circle.

The ancients devoted much time to this problem, and some
writers attributed an attempt to Hippocrates himself.

Piecing together the evidence, we gather that what follows
is the sort of argument some ancient writers had in mind.
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False argument

Imagine an arbitrary circle
with diameter AB. Construct
a large circle with center O and
diameter CD that is twice AB.

•

••

•

•• •

O
C D

E F

GHWithin the larger circle,
inscribe a regular hexagon.

Using the six segments CE=EF=FD=DG=GH=CH,
construct the six semicircles shown in the figure. This
generates the shaded region composed of the six lunes.
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False argument (cont.ed)

Now observe that:

Area (hexagon) + 3 Area (circle on AB)

= Area (large circle) + Area (6 lunes)

The large circle, having twice the diameter (of AB), must
have 4 times the area of the smaller circle. Hence:

Area (hexagon) + 3 Area (circle on AB)

= 4 Area (circle on AB) + Area (6 lunes)

and subtracting “3 Area (circle on AB)” from both sides of
the above equation, we get

Area (circle on AB) = Area (hexagon) - Area (6 lunes)

– p. 24/27



False argument (end)

Since both the hexagon (being a polygon) and the lunes
can be squared, thus the circle on AB can be squared by
the simple process of subtracting areas.

Unfortunately, there is a glaring argument: the lunes that
Hippocrates squared were not constructed along the side of
an hexagon but rather along the side of a square.

The problem of squaring the circle remained unresolved for
about 2,000 years.
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Ferdinand Lindemann and more

At last in 1882, the German mathematician Ferdinand
Lindemann proved that the quadrature of the circle is
impossible.

It sufficed to prove that π is a “transcendental number,” that
is π is not a solution of any polynomial equation with integer
coefficients. (A very hard proof!)

Overall, there are 5 type of lunes that are quadrable: 3
types were found by Hippocrates and 2 more kinds were
found by Leonhard Euler in 1771.

In the 20th century Tschebatorew and Dorodnow proved
that these 5 are the only quadrable lunes!
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Possible ideas for the final project

• The 5 lunes of Hippocrates and Euler.

• The three famous problems of antiquity and their
solution: Constructible numbers.

• Lindemann’s proof of the transcendence of π.
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