MA 361 - 05/05/2003 FINAL EXAM	Spring 2003 A. Corso	Name:
-----------------------------------	-------------------------	-------

PLEASE, BE NEAT AND SHOW ALL YOUR WORK; JUSTIFY YOUR ANSWER.

Problem	Possible	Points
Number	Points	Earned
1	20	
2	20	
3	15	
4	15	
5	15	
6	15	
TOTAL	100	

- 1. (i) Compute the indicated product of cycles that are permutations of S_8
 - * (1,2)(4,7,8)(2,1)(7,2,8,1,5)
 - * (1,4,5)(7,8)(2,5,7).
 - (*ii*) Express the following permutation of S_8

as product of disjoint cycles and then as product of transpositions.

(iii) Consider the following permutations of S_6

and compute

$$au\sigma, \qquad au^2\sigma, \qquad \sigma^{-1} au\sigma, \qquad \sigma^{100}, \qquad |\langle au^2
angle|.$$

(*iv*) Find the index of $\langle \sigma \rangle = (1, 2, 5, 4)(2, 3)$ in S_5 .

- 2. (i) Draw the subgroup diagram for the subgroups of the group \mathbb{Z}_{12} .
 - (*ii*) Find all cosets of the subgroup $\langle \overline{4} \rangle$ of \mathbb{Z}_{12} .
 - (*iii*) Find the number of automorphisms of \mathbb{Z}_{12} .
 - (*iv*) Find the order of $\overline{26} + \langle \overline{12} \rangle$ in $\mathbb{Z}_{60} / \langle \overline{12} \rangle$.

- 3. Choose one of the following problems:
 - (a) Determine whether the map

$$\varphi \colon (M_2(\mathbb{R}), \cdot) \longrightarrow (\mathbb{R}, \cdot),$$

where $\varphi(A) = \det(A)$, is an isomorphism of binary structures. Explain.

(b) Let F be the set of all functions f mapping $\mathbb R$ into $\mathbb R$ that have derivatives of all orders. Determine whether the map

$$\varphi \colon (F,+) \longrightarrow (F,+),$$

where $\varphi(f)(x) = \frac{d}{dx} \int_0^x f(t) dt$, is an isomorphism of binary structures. Explain.

4. Choose one of the following problems:

(a) Let S be the set of all real numbers except -1. Define * on S by

$$a * b = a + b + ab$$

- (i) Show that * gives a binary operation on S.
- (*ii*) Show that (S, *) is a group.
- (b) Let $\varphi: G \longrightarrow G'$ be an homomorphism of groups. If H is a subgroup of G, then $\varphi[H]$ is a subgroup of G'.

- 5. Choose one of the following problems:
 - (a) Let H be a subgroup of a group G. For $a, b \in G$, let $a \sim b$ if and only if $ab^{-1} \in H$. Show that \sim is an equivalence relation on G.
 - (b) Let G be a group and suppose $a \in G$ generates a cyclic subgroup of order 2 and is the unique such element. Show that ax = xa for all $x \in G$.

- 6. Choose one of the following problems:
 - (a) A torsion group is a group all of whose elements have finite order. A group is torsion free if the identity is the only element of finite order.
 Prove that the torsion subgroup T of an abelian group G is a normal subgroup of G, and that G/T is torsion free.
 - (b) Show that the inner automorphisms of a group G form a normal subgroup of all automorphisms of G under compositions.

