MA 361 - 02/27/2012 Spring 2012 FIRST MIDTERM A. Corso	Name:
---	-------

PLEASE, BE NEAT AND SHOW ALL YOUR WORK; JUSTIFY YOUR ANSWER.

Problem Number	Possible Points	Points Earned
1	10	
2	10	
3	10	
4	10	
5	10	
Bonus	5	
TOTAL	55	/50

1. (a) Write the arithmetic expression

$$\frac{2-4i}{i(3+i)}$$

in the form a + ib for $a, b \in \mathbb{R}$.

(b) Find all solutions in \mathbb{C} of the equation $z^3 = -27i$.

- **2.** Choose one of the following problems:
 - (a) Determine whether the map

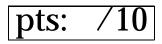
$$\varphi \colon (M_2(\mathbb{R}), \cdot) \longrightarrow (\mathbb{R}, \cdot),$$

where $\varphi(A) = \det(A)$, is an isomorphism of binary structures. Explain.

(*b*) Let *F* be the set of all functions *f* mapping \mathbb{R} into \mathbb{R} that have derivatives of all orders. Determine whether the map

$$\varphi \colon (F,+) \longrightarrow (F,+),$$

where $\varphi(f)(x) = \frac{d}{dx} \int_0^x f(t) dt$, is an isomorphism of binary structures. Explain.



- **3.** The map $\varphi : \mathbb{Q} \longrightarrow \mathbb{Q}$ defined by $\varphi(x) = 3x 1$ for $x \in \mathbb{Q}$ is one-to-one and onto \mathbb{Q} . Give the definition of a binary operation * on \mathbb{Q} such that φ is an isomorphism mapping
 - (a) $(\mathbb{Q}, +)$ onto $(\mathbb{Q}, *)$,
 - (b) $(\mathbb{Q}, *)$ onto $(\mathbb{Q}, +)$.

4. (a) Determine whether the binary operation * defined by

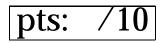
$$a * b = \frac{ab}{3}$$

gives a group structure on the set \mathbb{Q}^\ast of nonzero rational numbers.

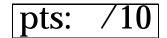
 $(b)\,$ Determine whether the binary operation * defined by

$$a * b = \frac{a}{b}$$

gives a group structure on the set \mathbb{R}^* of nonzero real numbers.



- **5.** Let (G, *) be a group.
 - (a) Show that $(g_1 * g_2)^2 = g_1^2 * g_2^2$, for some $g_1, g_2 \in G$, if and only if $g_1 * g_2 = g_2 * g_1$.
 - (b) Conclude that the map $f: G \longrightarrow G$, defined by setting $f(g) = g^2$ for all $g \in G$, is an homomorphism if and only if G is abelian.



Bonus. Choose one of the following problems:

(a) Let $f: A \longrightarrow B$ be a surjective map of sets. Prove that the relation

$$a \sim b$$
 if and only if $f(a) = f(b)$

is an equivalence relation. Describe the equivalence classes of \sim ?

(b)

*	a	b	c	d
a	a	b	c	d
b	b	a	c	d
С	c	d	c	d
d				

The above table can be completed to define an associative binary operation * on $S = \{a, b, c, d\}$. Assume this is possible and compute the missing entries.

