CHAPTER 12
PUBLIC-KEY
CRYPTOGRAPHY

PREREQUISITE: Section 2.3.

Codes have been used for centuries by merchants, spies, armies, and diplo-
mats to transmit secret messages. In recent times, the large volume of
sensitive material in government and corporate computerized data banks
(much of which is transmitted by satellite or over telephone lines) has
increased the need for efficient, high-security codes.

It is easy to construct unbreakable codes for one-time use. Consider
this “code pad™:

Actual Word: morning evening Monday Tuesday attack
Code Word: bat glxt king button  figle

If I send you the message FIGLE BUTTON BAT, there is no way an enemy
can know for certain that it means “‘attack on Tuesday morning” unless he
or she has a copy of the pad. Of course, if the same code is used again, the
enemy might well be able to break it by analyzing the events that occur after
each message.

Although one-time code pads are unbreakable, they are cumbersome
and inefficient when many long messages must be routinely sent. Even if the
encoding and decoding are done by a computer, it is still necessary to design
and supply a new pad (at least as long as the message) to each participant for
every message and to make all copies of these pads secure from unautho-
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rized persons. This is expensive and impractical when hundreds of thou-
sands of words must be encoded and decoded every day.

For frequent computer-based communication among several parties,
the ideal code system would be one in which

1. Each person has efficient, reusable, computer algorithms for en-
coding and decoding messages.

2. Each person’s decoding algorithm is not obtainable from his or her
encoding algorithm in any reasonable amount of time.

A code system with these properties is called a public-key system. Although
it may not be clear how condition 2 could be satisfied, it is easy to see the
advantages of a public-key system.

The encoding algorithm of each participant could be publicly an-
nounced — perhaps published in abook (like a telephone directory) —thus
eliminating the need for couriers and the security problems associated with
the distribution of code pads. This would not compromise secrecy because
of condition 2: Knowing a person’s encoding algorithm would not enable
you to determine his or her decoding algorithm. So you would have no way
of decoding messages sent to another person in his or her code, even though
you could send coded messages to that person.

Since the encoding algorithms for a public-key system are available to
everyone, forgery appears to be a possibility. Suppose, for example, thata
bank receives a coded message claiming to be from Anne and requesting the
bank to transfer money from Anne’s account into Tom’s account. How can
the bank be sure the message was actually sent by Anne?

The answer is as simple as it is foolproof. Coding and decoding algo-
rithms are inverses of each other: Applying one after the other (in either
order). produces the word you started with. So Anne first uses her secret
decoding algorithm to write her name; say it becomes Gybx. She then
applies the bank’s public encoding algorithm to Gybx and sends the result
(her “‘signature’’) along with her message. The bank uses its secret decoding
algorithm on this “signature” and obtains Gybx. It then applies Anne’s
public encoding algorithm to Gybx, which turns it into Anne. The bank can
then be sure the message is from Anne, because no one else could use her
decoding algorithm to produce the word Gybx that is encoded as Anne.

One public-key system was developed by R. Rivest, A. Shamir, and L.
Adleman in 1977. Their system, now called the RSA system, is based on
elementary number theory. Its security depends on the difficulty of factor-
ing large integers (as described in Section 1.4). Here are the mathematical
preliminaries needed to understand the RSA system.

LEMMA 12.1 Letp,r,s, c € Zwithpprime. Ifp [ cand rc = sc (mod p), then
r=s (modp).
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Proof Since rc = sc (mod p), p divides rc — sc = (r — s)c. By Theorem 1.8,
pl(r—s) orp|c.Sincep [ ¢, we have p| (r — 5), and hence r = s (mod p). B

LEMMA 12.2 (FERMAT'S LITTLE THEOREM) Ifpisprime,a€Z,andp | a,
then a®~! = 1 (mod p).

Proof* None of the numbers a, 2a, 3a, . . . , (p — 1)a is congruent to 0
modulo p by Exercise 1. Consequently, each of them must be congruent to
oneof1,2,3,...,p—1 by Corollary 2.5 and Theorem 2.3. If two of
them were congruent to the same one, say ra = i = sa (mod p) with

1=irs=sp-—1,

then we would have r = s (mod p) by Lemma 12.1 (with ¢ = a). This is
impossible because no two of the numbers 1, 2,3, . . . , p—1 are con-
gruent modulo p (the difference of any two is less than p and hence not
divisible by p). Therefore in some order a, 2a, 3a, . . . , (p —1)a are
congruentto 1, 2,3, . . . , p— 1. By repeated use of Theorem 2.2,

a-2a-3a---(p—1a=1-2-3---(p—1) (modp).
Rearranging the left side shows that
a-a-a --a-1-2:3---(p—1)=1-2-3---(p—1) (mod p)
a@'(1-2:3---(p—1)=1(1-2-3---(p— 1)) (mod p).

Nowp [(1-2-3---(p—1))(ifitdid, p would divide one of the factors by
Corollary 1.9). Therefore a»"! =1 (mod p) by Lemma 12.1 (with ¢=
1:2-3---(p—1)). B

Throughout the rest of this discussion p and q are distinct positive
primes. Let n = pq and k= (p — 1)(q — 1). Choose d such that (d,k) = 1.
Then the equation dx = 1 has a solution in Z; by Corollary 2.9. Therefore
the congruence dx = 1 (mod k) has a solution in Z; call it e.

THEOREM 12.3 Let p, q, n, k, e, d be as above. Then b*® = b (mod n) for
everybel.

Proof Since eis a solution of dx = 1 (mod k), de — 1 = kt for some t. Hence
ed =kt + 1, so that

bed = pR+1 = ppl = pe=Dia-1ip = (hp-1)a—Drp,
Ifp | b, then by Lemma 12.2,
' bed = (bp~1)a~1tp = (1)e~Vth = b (mod p).

* A shorter alternate proof, using group theory, is outlined in Exercise 15 of Section 7.8.
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If p| b, then b and every one of its powers are congruent to 0 modulo p.
Therefore in every case, b*® = b (mod p). A similar argument shows that
b = b (mod g). By the definition of congruence,

pl<—b) and, ql(b~—b).

Therefore pq|(b** —b) by Exercise 2. Since pq=n, this means that
n|(b*¢ — b), and hence b** = b (mod n). &

The least residue modulo n of an integer c is the remainder r when cis
divided by n. By the Division Algorithm, ¢ = nq + r, so that ¢ — r = nq, and
hence ¢ = r (mod n). Since two numbers strictly between 0 and n cannot be
congruent modulo n, the least residue of cis the only integer between 0 and
n that is congruent to ¢ modulo n.

We can now describe the mechanics of the RSA system, after which we
shall show how it satisfies the conditions for a public-key system. The
message to be sent is first converted to numerical form by replacing each
letter or space by a two-digit number:*

space =00, A=01,B=02, . . . ,Y=25,Z=26.

For instance, the word GO is written as the number 0715 and WEST is
written 23051920, so that the message ““GO WEST"’ becomes the number
07150023051920, which we shall denote by B.

Let p, q, n, k, d, e be as in Theorem 12.3, with p and g chosen so that
B < pg = n. To encode message B, compute the least residue of B° modulo
n; denote it by C. Then C is the coded form of B. Send C in any convenient
way.

The person who receives C decodes it by computing the least residue
of C? modulo n. This produces the original message for the following rea-
sons. Since B* is congruent modulo n to its least resndue C, Theorem 12.3
shows that

C? = (B°)¢ = B** = B (mod n).

The least residue of C%is the only number between 0 and n that is congruent
to C¢modulo n and 0 < B < n. So the original message B is the least residue
of C.

Before presenting a numerical example, we show that the RSA system
satisfies the conditions for a public-key system:

1. When the RSA system is used in practice, p and q are large primes
(on the order of 100 digits each). As noted in Section 1.4 such
primes can be quickly identified by a computer. Even though B, ¢,

* More numbers could be used for puncutation lharks, numerals, special symbols, etc. But this
will be sufficient for illustrating the basic concepts.
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" C, d are large numbers, there are fast algorithms for finding the
least residues of B* and C?¢ modulo n. They are based on binary
representation of the exponent and do not require direct computa-
tion of B* or C4 (which would be gigantic numbers). See Knuth [33]
for details. So the encoding and decoding algorithms of the RSA
system are computationally efficient.

2. To use the RSA system, each personin the network uses acomputer
to choose appropriate p, g, d and then determines n, k, e. The
numbers e and n for the encoding algorithm are publicly an-
nounced, but the prime factors p, g of n and the numbers d and k are
kept secret. Anyone with a computer can encode messages by
using e and n. But there is no practical way for outsiders to deter-
mine d (and hence the decoding algorithm) without first finding p
and q by factoring n.* With present technology this would take
millions of years, as explained in Section 1.4. So the RSA system
appears secure, as long as new and very fast methods of factoring
are not developed.

Even when n is chosen as above, there may be some messages that in
numerical form are larger than n. In such cases the original message is -
broken into several blocks, each of which is less than n. Here is an example,
due to Rivest-Shamir-Adleman.

EXAMPLE Let p =47 and ¢=59. Then n=pq =47 - 59 = 2773
and k= (p— 1)(g— 1) = 46 - 58 = 2668.** Let d =157, which is
easily shown to be relatively prime to 2668. Solving the congruence
157x = 1 (mod 2668) shows that e = 17 (see Exercise 15 in Section
13.1). We shall encode the message “IT’S ALL. GREEK TO ME.” We
can encode only numbers less than n = 2773. So we write the message
in two-letter blocks (and denote spaces by #):

IT S # AL L# - GR
0920 1900 0112 1200 0718
EE K # T O # M E #
0505 1100 2015 0013 0500.

Then each block is a number less than 2773. The first block, 0920, is
encoded by using e = 17 and a computer to calculate the least residue
of 920'7 modulo 2773:

920'7 = 948 (mod 2773).

* Alternatively, one might try to find k and then solve the congruence ex = 1 (mod k) to get d.
But this can be shown to be computationally equivalent to factoring n, so no time is saved.
** These numbers will illustrate the concepts. But they are too small to provide a secure code
since 2773 can be factored by hand.




378

12 Public-Key Cryptography

The other blocks are encoded similarly, so the coded form of the
message is

0948 2342 1084 1444 2663
2390 0778 0774 0219 1655.

A person receiving this message would use d = 157 to decode each
block. For instance, to decode 0948, the computer calculates

948157 = 920 (mod 2773).
This is the original first block 0920 = IT.

For more information on cryptography and the RSA system, see De-

Millo-Davida [36], Diffie-Hellman [37], Rivest-Shamir-Adleman [38], and
Simmons [39].

EXERCISES

A. L

Letpbe aprime andk, a € Zsuch thatp [ aand 0 < k < p. Prove that
ka # 0 (mod p). [Hint: Theorem 1.8.]

. If p and q are distinct primes such that p | c and g | ¢, prove that pq | c.

[Hint: If ¢ = pk, then q| pk; use Theorem 1.8 ]

. Use a calculator and the RSA encoding algorithm with e=3, n=

2773 to encode these messages:
(a) GOHOME (b) COMEBACK (c) DROP DEAD
[Hint: Use 2-letter blocks and don’t omit spaces.]

. Prove this version of Fermat’s Little Theorem: If p is a prime and

a € Z, then a? = a (mod p). [Hint: Consider two cases, p|a and p [ a;
use Lemma 12.2 in the second case.]

. Find the decoding algorithm for the code in Exercise 3.

6. Let Cbe the coded form of a message that was encoded by using the

RSA algorithm. Suppose that you discover that C and the encoding
modulus n are not relatively prime. Explain how you could factor n
and thus find the decoding algorithm. [The probability of such a C
occurring is less than 107% when the prime factors p, g of n have
more than 100 digits.]




