MA561 – Modern Algebra Homework set # 2 The due date is September 17 (Wednesday), 2008.

9. Let G be a finite group and let x be an element of G of order n. Prove that if n is odd, then

$$x = (x^2)^k$$

for some k.

- **10.** Let (G, \cdot) be a group and let x be an element of G of infinite order. Prove that
 - (i) $x^{l} = x^{m}$ if and only if l = m for all $l, m \in \mathbb{Z}$, that is the elements $\{x^{n} | n \in \mathbb{Z}\}$ are all distinct;
 - (ii) the order of x^m is infinite for any $m \in \mathbb{Z} \setminus \{0\}$.
- 11. Let G be a finite group of even order. Define $t(G) = \{g \in G \mid g \neq g^{-1}\}$. Show that t(G) has an even number of elements. Conclude that G contains an element of order 2.
- 12. Let G be a group such that $(ab)^i = a^i b^i$ for three consecutive integers i and all $a, b \in G$. Prove that G is abelian.
- **13.** Show that the group $((\mathbb{Z}/8\mathbb{Z})^{\times}, \cdot)$ is not cyclic.
- **14.** Let (G, \cdot) be a group with identity element 1 and let $a, b \in G$ be such that ab = 1. Show that ba = 1, thus b is the inverse of a.
- **15.** Consider the map $f: \mathbb{Z}/5\mathbb{Z} \longrightarrow \mathbb{Z}/5\mathbb{Z}$ given by $\overline{a} \mapsto \overline{3a-2}$. Compute the inverse map g and write in the form $g(b) = \overline{\alpha b + \beta}$ for some $\alpha, \beta \in \{0, 1, 2, 3, 4\}$.
- **16.** If x and g are elements of the group (G, \cdot) , prove that x and $g^{-1}xg$ have the same order. Deduce that ab and ba have the same order for all $a, b \in G$.