MA561 – Modern Algebra Homework set # 3 The due date is September 26 (Friday), 2008.

- 17. Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{-1}$ is an homomorphism if and only if G is abelian.
- **18.** Let $D_{2n} = \langle r, s | r^n = s^2 = 1, rs = sr^{-1} \rangle$.
 - * Show that if x is not a power of r then $rx = xr^{-1}$.
 - \star Show that any such x has order 2.
 - * If n = 2k is even and $n \ge 4$, show that r^k is an element of order 2 and that it commutes with all the elements of D_{2n} .
- **19.** Prove that the order of $GL_2(\mathbb{F}_2)$ is 6. Note that $\mathbb{F}_2 = \mathbb{Z}_2$.
- **20.** Prove that a group G cannot have a subgroup H with |H| = n-1, where n = |G| > 2.
- **21.** Let $H_1 \leq H_2 \leq \cdots$ be an ascending chain of subgroups of a group G. Prove that $\bigcup_{i=0}^{\infty} H_i$ is a subgroup of G.
- **22.** Let G be an abelian group. Prove that $H = \{g \in G \mid |g| < \infty\}$ is a subgroup of G, called the *torsion subgroup* of G.
- **23.** Let G be a finite group of order n. Use Lagrange's Theorem to show that the map

$$\gamma\colon G \longrightarrow G, \quad g \mapsto \gamma(g) = g^k$$

is surjective for any integer k relatively prime to n. That is, for such integer k any element $g \in G$ has a k^{th} root in G.

24. Use Lagrange's Theorem in the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ to prove *Fermat's Little Theorem*:

If p is a prime then $a^p \equiv a \mod p$ for all $a \in \mathbb{Z}$.