MA561 – Modern Algebra Homework set #4

The due date is October 8 (Wednesday), 2008.

- **25.** \star Let G be an abelian group and $H \leq G$ be a subgroup of G. Show that the quotient group G/H is abelian.
 - \star Give an example of a non-abelian group G and a normal subgroup H of G such that G/H is abelian.
- **26.** Let G and H be groups. Let $\varphi \colon G \longrightarrow H$ be a surjective homomorphism and let N denote the kernel of φ . For $h \in H$ let $\varphi^{-1}(h) = \{g \in G \mid \varphi(g) = h\}$ be the fiber of h.

Show that for all $h \in H$ we have $\varphi^{-1}(h) = gN = Ng$, where g is any element in $\varphi^{-1}(h)$.

27. Find the cycle decomposition as well as the inverse of the permutation

 $\sigma = (7\ 5\ 1)(1\ 5\ 3\ 2)(4\ 1)(3\ 1\ 6)(7\ 1\ 3) \in S_7.$

- **28.** Prove that if H and K are finite subgroups of G whose orders are relatively prime then $H \cap K = \{e_G\}$.
- **29.** Let G be a group and let $K \leq G$ and $H \leq G$. Show that $H \cap K \leq K$ and $HK \leq G$.
- **30.** Let *H* and *K* be normal subgroups of *G* such that G = HK. Prove that $G/(H \cap K) \cong G/H \times G/K$. In particular, if $H \cap K = \{e_G\}$ one has that $G \cong G/H \times G/K$.
- **31.** Let $G = \{1, a, b, c\}$ be a group of order 4. Show that either $G \cong \mathbb{Z}/4\mathbb{Z}$ or $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- **32.** Let G be a group. For any $g \in G$ define the map

$$f_g \colon G \longrightarrow G, x \mapsto f_g(x) = gxg^{-1},$$

called *inner automorphism* (or *conjugation*).

- * Verify that f_g is an automorphism of G.
- ★ Show that the map $\varphi : g \mapsto f_g$ is a homomorphism of G into Aut(G). Describe ker φ .