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We establish GIT semistability of the 2nd Hilbert point of every Gieseker-Petri general canonical curve by a simple

geometric argument. As a consequence, we obtain an upper bound on slopes of general families of Gorenstein curves.

We also explore the question of what replaces hyperelliptic curves in the GIT quotients of the Hilbert scheme of

canonical curves.
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1 Introduction

The log minimal model program for Mg, also known as the Hassett-Keel program, offers a promising approach
to understanding the birational geometry of the moduli space of curves. The goal of this program is to find a
functorial interpretation of the log canonical models

Mg(α) = Proj
⊕
m≥0

H0(Mg, bm(KMg
+ αδ)c).

Such an interpretation could then be used to study properties of the rational contraction Mg 99K Mg(α) and to
obtain structural results about the cone of effective divisors of Mg, in particular its Mori chamber decomposition.

Hassett and Hyeon constructed the first two log canonical models of Mg by considering GIT quotients of
asymptotically linearized Hilbert schemes of tricanonical and bicanonical curves [13, 12]. It is widely expected
that further progress in the Hassett-Keel program will require GIT stability analysis of finite (i.e. non-asymptotic)
Hilbert points of bicanonical and canonical curves; see [17, 18, 10, 3]. The case of canonical curves is of particular
interest because it should lead to birational contractions of Mg affecting the interior.

Only recently it was shown that finite Hilbert points of general canonical curves are semistable in all genera
[2]. In particular, the question of which smooth canonical curves have (semi)stable mth Hilbert points is widely
open. Here we make partial progress towards answering this question. Our main result is a geometric proof of
the semistability of the 2nd Hilbert point of a general canonical curve that leads to a sufficient condition for
semistability, something that the previous results lack.

Theorem 1.1. Let C be a Gieseker-Petri general smooth curve of genus g ≥ 4. Then its canonical embedding
C ⊂ Pg−1 has semistable 2nd Hilbert point.
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This result strengthens and complements the proof of generic semistability of 2nd Hilbert points of canonical
curves in [2]. Not only do we show that the GIT quotient of the variety of 2nd Hilbert points of canonical curves
is non-empty, but also that this GIT quotient parameterizes all curves whose linear systems behave generically.
Assuming the expected stability of the general canonical curve, this GIT quotient is an interesting projective
birational model of Mg:

If G is the quotient in question, then the map f : Mg 99K G is not a local isomorphism along the locus of
curves of low Clifford index. As we show in this paper, f is not regular along the hyperelliptic locus Hg ⊂Mg

(see Section 4). In addition, f is not regular along the locus Trigg(+) of trigonal curves with positive Maroni
invariant and contracts the locus Trigg(0) of trigonal curves with Maroni invariant 0 to a point (this locus is
non-empty only for even g); see Corollary 3.2. We also observe that f is not regular along the bielliptic locus
for g ≥ 7. Finally, in the case g = 6, the rational map f contracts both the bielliptic locus (see Proposition 5.2)
and the locus of plane quintics (see Corollary 3.5).

In addition to studying the indeterminacy locus of the map f : Mg 99K G, we also examine the indeterminacy
locus of its inverse f−1 : G 99K Mg. To this end, we show that G parameterizes many different types of singular
curves, a large number of which are enumerated in Theorem 3.3. Each of these singularities is predicted to play
a role in a functorial interpretation of Mg(α); see [1] for precise predictions. As a consequence of our analysis, we
discover a class of curves, the A2g-rational curves, which lie in the total transform under f of the hyperelliptic
locus Hg.

Finally, we include an important application of our semistability result, providing an upper bound on slopes
of one-parameter families of Gorenstein curves with a sufficiently general generic fiber.

Theorem 1.2. Let B be a complete curve. If C → B is a flat family of Gorenstein curves with generic fiber a
canonically embedded curve whose 2nd Hilbert point is semistable, then the degree λ of the Hodge bundle and
the degree δ of the discriminant divisor satisfy the inequality

δ

λ
≤ 7 +

6
g
.

This theorem is an extension of a celebrated result of Cornalba and Harris [7], also independently obtained
by Xiao [22], saying that the slope of any generically smooth family of Deligne-Mumford stable curves of genus
g is at most 8 + 4/g.

We prove Theorem 1.2 in Section 5, where we explicate the genericity assumption and give a precise
definition of λ and δ. We note in particular that the condition that the generic fiber is GIT semistable implies
that it is not hyperelliptic or trigonal with positive Maroni invariant. It has long been expected that lower
bounds on the slope of a family of curves should depend on the Clifford index and other geometric properties
of the generic fiber; see e.g. [15, 19, 5].

2 Semistability of 2nd Hilbert points

We briefly recall the necessary definitions. Let C ↪→ Pg−1 be a canonically embedded smooth curve of genus
g ≥ 4. Using Max Noether’s theorem on projective normality of canonical curves [4, p.117], we define the 2nd

Hilbert point of C ↪→ Pg−1 to be the quotient[
H0(Pg−1,OPg−1(2))→ H0(C,OC(2))→ 0

]
∈ Grass

(
3g − 3,

(
g + 1

2

))
.

We denote by Hilb
2

g the closure of the locus of 2nd Hilbert points of canonically embedded curves in the

Grassmannian Grass(3g − 3,
(
g+1
2

)
) and endow Hilb

2

g with the linearization O (1) coming from the Plücker
embedding of the Grassmannian into P

∧3g−3 H0(Pg−1,OPg−1(2)). Finally, we set

G := Hilb
2,ss

g // SL(g) = Proj
⊕
m≥0

H0(Hilb
2

g ,O(m))SL(g)

to be the resulting GIT quotient. One reason that this construction is of particular interest is that the map

f : Mg 99K G

is not an isomorphism on the interior Mg ⊂Mg. More precisely, we show that curves of Clifford index 0 and
1 are outside of the locus where this map is locally an isomorphism. We consider hyperelliptic, trigonal, and
bielliptic curves in the later sections of the paper.

We proceed to state the main result of our paper in its greatest generality and to record its most important
corollaries.
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Theorem 2.1. A canonical curve of genus g not lying on a quadric of rank 3 or less has semistable 2nd Hilbert
point.

Proof . Our key geometric tool is the SL(g)-invariant effective divisor D ⊂ Grass(3g − 3,
(
g+1
2

)
) defined as the

locus of (3g − 3)-dimensional quotients of H0(Pg−1,OPg−1(2)) whose kernel contains a quadric of rank at most
3. The fact that D is a divisor follows directly from the fact that the locus of quadrics of rank at most 3 has
dimension 3g − 3 in H0(Pg−1,OPg−1(2)). Since Grass(3g − 3,

(
g+1
2

)
) is smooth of Picard number 1, the divisor

D is defined by a global section of some power of O(1). Since SL(g) has no non-trivial characters, this section
is SL(g)-invariant. It follows that any curve whose Hilbert point is not contained in D is semistable.

Recall that a complete smooth curve C is said to be Gieseker-Petri general if it satisfies the Petri condition
that

µ : H0(C,L)⊗H0(C,KC − L)→ H0(C,KC)

is injective for all L ∈ Pic(C). That a general curve in Mg is Gieseker-Petri general was proved by Gieseker [11],
as well as Eisenbud and Harris [9] using degeneration arguments.

Lemma 2.2. The canonical embedding of a Gieseker-Petri general curve does not lie on a rank 3 quadric.

Proof . Suppose a canonically embedded curve lies on a quadric of rank 3 whose vertex is a linear space Λ
of dimension g − 3. The projection away from Λ maps C onto a conic R ' P1 in P2. It follows that there is a
decomposition KC = 2L+B. Here, B is an effective divisor with Supp(B) = Λ ∩ C, and L is a pullback of O(1)
from R. In particular, we have h0(C,L) ≥ 2. Let s0, s1 be two distinct non-zero global sections of L, and s′0, s

′
1

be the same rational functions considered now as sections of L+B. Then

µ(s0 ⊗ s′1 − s1 ⊗ s′0) = 0,

violating the Petri condition.

Corollary 2.3. Theorem 1.1 holds.

Proof . Indeed, Theorem 1.1 is an immediate corollary of Lemma 2.2 and Theorem 2.1.

3 Degenerations to rational normal surface scrolls

Aside from canonical curves, there is another variety of interest in Pg−1 with ideal generated by
(
g−2
2

)
quadrics,

namely a rational normal surface scroll. Recall that for non-negative integers a and b satisfying a+ b = g − 2,
a rational normal surface scroll Sa,b ⊂ Pg−1 is the join of two rational normal curves of degrees a and b whose
linear spans do not intersect.

Rational normal surface scrolls are of particular interest to us because the linear system of quadrics
containing a smooth trigonal canonical curve C ⊂ Pg−1 cuts out precisely such a surface. Namely, by the
geometric Riemann-Roch the g1

3 ’s on C are collinear in Pg−1, and the resulting lines sweep out a rational
normal surface scroll Sa,b. The difference |a− b| is classically known as the Maroni invariant of C. An important
fact is that the ideal of the rational normal surface containing C is generated by the quadrics containing C [4]. It
follows that the 2nd Hilbert point of a smooth trigonal canonical curve C ⊂ Pg−1 coincides with the 2nd Hilbert
point of the rational normal scroll containing it.

In this section, we show that a rational normal surface scroll Sa,b is semistable if and only if a = b, i.e. if it
is a P1 × P1 embedded by the complete linear system |OP1×P1(1, a)| in P2a+1.

Proposition 3.1. A rational normal surface Sa,b has semistable 2nd Hilbert point if and only if a = b.

Proof . The scroll Sa,a in P2a−1 is the image of the homogeneous space P1 × P1 embedded via the complete
linear system |O (a− 1, 1)|. The fact that its mth Hilbert point is semistable now follows from Kempf’s stability
results [14, Corollary 5.3].

Suppose now that a 6= b. To see that the scroll Sa,b is non-semistable, recall that the ideal of Sa,b is generated
by the determinants of the 2× 2 minors of the following matrix(

x0 x1 · · · xa−1 y0 y1 · · · yb−1

x1 x2 · · · xa y1 y2 · · · yb

)
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We consider the one-parameter subgroup of Aut(Sa,b) ⊂ SL(g) acting with weight −(b+ 1) on xi’s and
weight a+ 1 on yi’s. The ideal of Sa,b becomes homogeneous with respect to ρ. It follows that every monomial
basis of H0(Sa,b,O(m)) has the same ρ-weight. For m = 2, we compute that the ρ-weight of H0(Sa,b,O(2)) is

2(b+ 1)
(
a

2

)
− 2(a+ 1)

(
b

2

)
− ab(a− b) = (a− b)(a+ b− 1) 6= 0.

Since the ρ-weight is non-zero, we conclude that Sa,b is non-semistable.

As a corollary, we obtain the following two results.

Corollary 3.2. Trigonal curves with positive Maroni invariant have non-semistable 2nd Hilbert points. Trigonal
curves with Maroni invariant 0 are strictly semistable and are identified in G = Hilb

2,ss

g //SL(g) with the point
corresponding to the balanced rational normal surface scroll in Pg−1.

Proof . This follows immediately from Proposition 3.1 and the fact that the 2nd Hilbert point of a trigonal
curve of genus g and Maroni invariant m coincides with the 2nd Hilbert point of the scroll S g+m

2 −1, g−m
2 −1.

We note that non-semistability of trigonal curves with a positive Maroni invariant reflects the fact that the
locus in Mg of trigonal curves contained in an unbalanced scroll is covered by families of slope strictly greater
than 7 + 6

g ; in particular, when g is odd, Trigg is covered by families of slope 7 + 20
3g+1 [8].

The second corollary of Proposition 3.1 shows that G = Hilb
2,ss

g //SL(g) parameterizes curves with numerous
singularities, as predicted by [1].

Theorem 3.3. Suppose g is even. There exist non-trigonal canonical curves with semistable 2nd Hilbert point
and possessing the following classes of singularities:

(a) All Ak singularities with k ≤ 2g + 1.
(b) All Dk singularities with k ≤ 2g.
(c) If g = 6m− 2, the singularity y3 = xg+2 and its deformations.
(d) If g = 6m− 4, the singularity y3 = xg+1 and its deformations.
(e) If g = 6m, the singularity y3 = xg+1 and its deformations.

Proof . Let g = 2k. We begin by constructing a curve C, with a desired singularity p ∈ C, in the class (3, k + 1)
on P1 × P1. Next we embed C via the restriction of the complete linear system |OP1×P1(1, k − 1)|, which is
evidently a canonical linear system on C. The 2nd Hilbert point of the canonical embedding of C will then be
the 2nd Hilbert point of the balanced normal scroll Sk−1,k−1, hence semistable by Proposition 3.1. We can then
deform C out of the scroll preserving singularities of C and the semistability of its 2nd Hilbert point.

Construction of the singular curve (C, p) on the scroll:

(a) Consider a smooth rational curve C1 in the class (2, 1) on P1 × P1. Since h0(O C1(−1, k − 1)) =
h1(O C1(−1, k − 1)) = 0, the restriction map |OP1×P1(1, k)| → |OC1(2k + 1)| is bijective. It follows that for every
p ∈ C1, there exists a unique divisor C2 ∈ |O P1×P1(1, k)| such that (C1 · C2)p = (2k + 1). Evidently, such a divi-
sor is smooth if p is not a ramification point of the projection pr2 : C1 → P1.

It follows that for the general point p ∈ C1, there is a smooth rational curve C2 ∈ |OP1×P1(1, k)| such that
C1 and C2 are maximally tangent at p. Namely, we have (C1 · C2)p = (2k + 1). It follows that C := C1 ∪ C2

is a curve of class (3, k + 1) on P1 × P1 with a unique singularity of type A2g+1. The complete linear system
|O (1, k − 1)| embeds P1 × P1 in Pg−1, mapping C1 and C2 to rational normal curves, meeting in a singularity
of type A2g+1 at p. Thus the image of C under this embedding is an A2g+1-rational curve on Sk−1,k−1; see
Definition 4.1.
(b) A curve with a D2g singularity is obtained by taking a nodal curve C1 of class (2, 2) and a curve C2 of class
(1, k − 1) that is tangent with multiplicity 2k − 1 to one of the branches at the node of C1.
(c) If k = 3m− 1, then we take three rational curves in the class (1,m), all meeting at a single point where they
pairwise intersect with multiplicity 2m. The resulting singularity is analytically isomorphic to y3 = xg+2.
(d) may be proved analogously to Part (c).
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(e) We exhibit an explicit curve in the class (3, 3m+ 1) with singularity analytically isomorphic to y3 = x6m+1.
Namely, consider

(y − xm)3 − x3m+1y3 = 0. (3.1)

This curve has a rational parameterization x = t3, y = t3m/(1− t3m+1). Evidently, under this parameterization
x = t3 and y − xm = t6m+1 + · · · . The claim follows.

Having established the existence of a curve C, with a desired singularity p ∈ C, in the class (3, k + 1)
on P1 × P1, we must now show that there exists a non-trigonal semistable curve with the same singularity.
To do this, we observe that a general equisingular deformation of C in Pg−1 is non-trigonal. More precisely,
the deformations of C as a subscheme of Pg−1 and the deformations of C as a (3, k + 1) divisor on P1 × P1

both surject smoothly onto the deformation space of the singularity p ∈ C. Since the dimension of the Hilbert
scheme of canonical curves is (3g − 3) + (g2 − 2g), the dimension of the SL(g)-orbit of the scroll is g2 − 2g − 6,
and the dimension of the linear system |O P1×P1(3, k + 1)| is 2g + 7, we conclude that the general equisingular
deformation of (C, p) does not lie on the scroll if and only if 3g − 3 > 2g + 1, or g > 4. This concludes the
proof.

In the specific case of g = 6, there is another surface of interest – the Veronese surface: If C ⊂ P5 is a
smooth canonical curve of genus 6 that admits a g2

5 , then any 5 points in a g2
5 are coplanar by the geometric

Riemann-Roch. It follows that each of the quadrics containing C also contains the conic through these five
points. The resulting two-dimensional family of conics sweeps out the Veronese surface in P5. Moreover, the
ideal of the Veronese surface is generated by the quadrics containing C.

Proposition 3.4. The Veronese surface in P5 has semistable 2nd Hilbert point.

Proof . This also follows immediately from [14, Corollary 5.3], as the Veronese surface is simply P2 embedded
in P5 via the complete linear system |O P2(2)|.

Corollary 3.5. A canonically embedded plane quintic has semistable 2nd Hilbert point, coinciding with the
2nd Hilbert point of a Veronese surface.

4 An answer to the riddle

What is the limit of the canonical model of a smooth curve as it degenerates to a hyperelliptic curve? This is the
question that opens a well-known paper of Bayer and Eisenbud [6]. In this section, we aim to show that their
answer – a ribbon – is only part of the story. In fact, there is a larger class of curves, the A2g-rational curves,
that give a canonical answer to this question, at least from the point of view of GIT for canonical curves.

Definition 4.1. A complete connected reduced curve of genus g with a unique singularity of type A2g (y2 =
x2g+1) is called an A2g-rational curve. A complete connected reduced curve of genus g with a unique singularity
of type A2g+1 (y2 = x2g+2) is called an A2g+1-rational curve.

Since the genus of the two singularities A2g+1 and A2g both equal g, an A2g-rational curve is necessarily
irreducible and its normalization is isomorphic to P1. Similarly, an A2g+1-rational curve necessarily has two
irreducible components, each isomorphic to P1. We will denote an A2g+1-rational curve C with the singularity
ÔC,p ' k[[x, y]]/(y2 − x2g+2) by (C, p).

Isomorphism classes of A2g+1-rational curves with a fixed pointed normalization are in bijection with closed
points of Gm ×Gg−1

a . Indeed, let the pointed normalization of an A2g+1-rational curve be a disjoint union of
two pointed rational curves (P1, p1) and (P1, p2), where the uniformizer at p1 is x and at p2 is y. Then the
isomorphism class of a (parameterized) A2g+1-curve is specified by a gluing datum y 7→ a1x+ · · ·+ agx

g, where
a1 6= 0, that defines an isomorphism

C[y]/(yg+1)→ C[x]/(xg+1)

along which the two length g + 1 subschemes supported at p1 and p2 respectively are glued. We call
(a1, a2, . . . , ag) ∈ Gm ×Gg−1

a the crimping, and refer the reader to [21] for a systematic treatment of crimping
for singular curves.

Suppose that C is an A2g+1-rational curve given by the gluing datum y 7→ a1x+ · · ·+ agx
g. Since C is

a local complete intersection curve, it admits a dualizing line bundle ωC . While there are numerous ways to
get a handle on this line bundle, we will only consider the one that, to us, is the most explicit. Namely, we
use the defining property which says that ωC is the unique line bundle that restricts to O(g − 1) on each
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irreducible rational component and has g global sections. It follows that we can identify KC with the triple
(O(g − 1),O(g − 1), κC) where

κC = 1 + k1x+ · · ·+ kgx
g ∈

(
C[x]/(xg+1)

)∗
is a gluing datum for a line bundle on C. Thus the determination of ωC reduces to computing κC .

Proposition 4.2. The canonical line bundle ωC is defined by

κC = 1 + k1x+ · · ·+ kg−1x
g−1 + kgx

g,

where kg = 0 and ki, 1 ≤ i ≤ g − 1, are (uniquely determined) polynomials in a1, (a1)−1, a2, . . . , ag.

Proof . Since ωC |C1 ' O(g − 1) has exactly g global sections 1, y, . . . , yg−1, all of them have to lift to global
sections of ωC . This means that each of the elements κC , κCy, . . . , κCy

g−1 of C[x]/(xg+1) must be a linear
combination of 1, x, . . . , xg−1. From this, we immediately obtain that kg = 0. Next, setting to 0 the coefficient
of xg in

κCy
n = (1 + k1x+ · · ·+ kg−1x

g−1)(a1x+ · · ·+ agx
g)n,

we obtain
an
1kg−n + nan−1

1 a2kg−n−1 + · · · = 0. (4.1)

Setting n = g − 1, this gives k1 = −na2/a1, which determines k1 uniquely. The assertion for k2, . . . , kg−1 follows
by induction by applying (4.1) for n = g − 2, . . . , 1 repeatedly.

Example 4.3 (see [?, Section 2.3.7]). Up to projectivities, there is a unique canonically embedded A9-curve
C. It can be defined by the crimping datum y 7→ x+ x2 + x3 + x4. A quick computation shows that the gluing
datum of ωC is κC = 1− 3x+ 5x2 − 5x3. It follows that C can be defined parametrically by

x0 =
(

1
1− 3x+ 5x2 − 5x3

)
, x1 =

(
y

x− 2x2 + 2x3

)
, x2 =

(
y2

x2 − x3

)
, x3 =

(
y3

x3

)
.

Example 4.4. Suppose g = 2k + 1. Consider the crimping datum

y 7→ x− txk+2,

where t 6= 0 is a parameter. One easily computes that κC = 1 + tkxk+1 and that the following is a basis of
H0(C,ωC):

ωi = (xi + t(k − i)xk+1+i, yi), i = 0, . . . , k − 1, ωi = (xi, yi), i = k, . . . , 2k.

We recall the definition of the balanced ribbon of genus g = 2k + 1 from [2]: it is a canonical ribbon obtained
by gluing Spec C[u, ε]/(ε2) and Spec C[v, η]/(η2) via the isomorphism

u 7→ v−1 + v−k−2η,

ε 7→ v−g−1η

of distinguished open affines Spec C[u, u−1, ε]/(ε2) and Spec C[v, v−1, η]/(η2).

Lemma 4.5. The flat limit as t→ 0 of the A2g+1-curve in Example 4.4 is the balanced canonical ribbon R of
genus g = 2k + 1.

Proof . Recall from [2, Lemma 3.1] that there is a basis of H0(R,ωR) whose elements can be identified with the
following polynomials in u and ε (here ε2 = 0):

zi = ui, 0 ≤ i ≤ k, zi = ui + (i− k)ui−k−1ε, k + 1 ≤ i ≤ 2k.

We keep the notation of Example 4.4. Note that if we set ψi := ωi/(x2k, y2k) and w := 1/x, then

ψi = (wi, y−i), 0 ≤ i ≤ k, ψi = (wi + (i− k)wi−k−1t, y−i), k + 1 ≤ i ≤ 2k.
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To prove the lemma, it suffices to show that any quadratic relation among the zi’s is a flat limit of a quadratic
relation among the ψi’s as t→ 0. If we evaluate a quadratic relation among zi’s on ψi, we obtain an expression
of the form (f(w)t2, 0), where deg f(w) ≤ 2k − 2. It remains to show that (wit, 0) can be obtained as a quadratic
polynomial in the ψ’s for 0 ≤ i ≤ 2k − 2. Indeed, we have

(wit, 0) = (wk+i+1 + (i+ 1)wit, y−k−i−1)(1, 1)− (wk+i + iwi−1t, y−k−i)(w, y−1)
= ψk+i+1ψ0 − ψk+iψ1, for 0 ≤ i ≤ k − 1,

and

(wit, 0) = (w2k + kwk−1t, y−2k)(xi−k+1, y−i+k−1)− (w2k−1 + iwk−2t, y−2k+1)(wi−k+2, y−i+k−2)
= ψ2kψi−k+1 − ψ2k−1ψi−k+2, for k ≤ i ≤ 2k − 2.

We conclude with an observation that the general A2g+1-rational curve is semistable. We would prefer the
stronger statement that such a curve is in fact stable, but at present we have no proof.

Proposition 4.6. A general A2g+1-rational curve has semistable 2nd Hilbert point.

Proof . By the above, the variety of A2g+1-rational curves in Pg−1 is irreducible. Thus, it suffices to find a single
A2g+1-rational curve with semistable 2nd Hilbert point. When g is even, this is already done by Theorem 3.3
(a). In the case of odd genus, we recall from [2] that the balanced canonical ribbon R has semistable 2nd Hilbert
point. Since R deforms flatly to A2g+1-rational curves by Lemma 4.5, we are done.

Corollary 4.7. A general A2g-rational curve is semistable.

Proof . The general A2g-rational curve is a deformation of the general A2g+1-rational curve. The statement now
follows from Proposition 4.6.

5 A slope inequality après Cornalba and Harris

In this section, we prove Theorem 1.2. To set notation, consider a flat proper family π : C → B of Gorenstein
curves of arithmetic genus g ≥ 4. By assumption, the relative dualizing sheaf ω := ωC/B is a line bundle. We set

λ := c1(π∗ω), λ2 := c1(π∗ω2).

After a finite base change, we will assume that λ is divisible by g in Pic(B) and we let ω̃ := ω(−λ/g). Then
the normalized Hodge bundle E := π∗ω̃ has a trivial determinant, i.e. the transition matrices of E are given by
elements of SL(g,OB).

5.0.1 Line bundles on the moduli stack of Gorenstein curves

Let Ug be the irreducible component of the stack of all complete canonically polarized Gorenstein curves of
arithmetic genus g that parameterizes smoothable curves. Then λ and λ2 are well-defined line bundles on Ug.
We formally define δ := 13λ− λ2. Note that Mg ⊂ Ug is an open immersion and that on Mg the line bundle
δ has a geometric interpretation as the line bundle associated to the Cartier divisor of nodal curves. Under
certain conditions this geometric interpretation can be extended to a larger open of Ug. To do this, we consider
the regular locus U reg

g ⊂ Ug and define ∆ := U reg
g rMg to be the locus parameterizing singular curves. Let ∆′

be the union of those irreducible components of ∆ whose generic points parameterize worse than nodal curves.
Then on U◦g := U reg

g r ∆′ the irreducible components of ∆ are Cartier divisors whose generic points parameterize
nodal curves. By construction, the locus of worse than nodal curves in U◦g is of codimension at least two. Thus
the relation O(∆) = 13λ− λ2 extends from Mg to U◦g . We conclude that at least on U◦g , the formally defined
line bundle δ is the associated line bundle of the Cartier divisor ∆ ⊂ U◦g parameterizing singular curves.



8

5.0.2 Slopes of families of Gorenstein curves

Given a family C → B as above, with B a complete curve, we define the slope of C → B to be (δ ·B)/(λ ·B). We
proceed to prove Theorem 1.2, which is a generalization of a special case of a well-known result of Cornalba and
Harris regarding divisor classes associated to families of Hilbert (semi)stable varieties [7]. In the case of families
of curves, the Cornalba-Harris theorem says that the slope of an arbitrary generically smooth family of stable
curves of genus g is at most 8 + 4/g [7, Theorem 1.3]. This result has been proved independently by Xiao [22]
for the wider class of fibered algebraic surfaces using a vector bundle argument and more recently by Moriwaki
[16] using semistability of a certain vector bundle on Mg.

Note that the Cornalba-Harris theorem is sharp: The general family of hyperelliptic curves of genus g has
slope precisely 8 + 4/g, while there exist families of bielliptic curves of slope 8 [5, Theorem 2.1] and there are
families of trigonal curves of slope 36(g + 1)/(5g + 1) by [19, 1].

Our proof of Theorem 1.2 follows closely the original argument of Cornalba and Harris, which relied on
geometric invariant theory. We include details for completeness. We also note that the Cornalba-Harris GIT
approach was recently generalized to more general families by Stoppino [20].

Proof of Theorem 1.2: The key input in Cornalba-Harris method [7] is the asymptotic Hilbert semistability of
the canonically embedded general fiber of C → B. Our assumption that the general fiber C has a semistable 2nd

Hilbert point is much stronger than asymptotic semistability and so leads to a stronger inequality. On the other
hand, not every smooth canonical curve has a semistable 2nd Hilbert point (see Proposition 5.2), so while our
inequality is stronger, we have to settle for a genericity assumption on the generic fiber.

By definition, semistability of C is equivalent to the existence of an SL(g)-invariant polynomial f ∈
H0(PW,O(d)), where W =

∧3g−3 Sym2 H0(C,ωC), that does not vanish at the point

3g−3∧
Sym2 H0(C,ωC)→

3g−3∧
H0(C,ω2

C)

of PW . Under the usual identification H0(PW,O(d)) ' SymdW , the polynomial f corresponds to a section of
SymdW that maps to a non-zero section of Symd∧3g−3 H0(C,ω2

C).
Consider now the family π : C → B as in the statement of the theorem. Let E = π∗(ω̃) be the normalized

Hodge bundle. Here, ω̃ = ω(−λ/g) and so det E ' OB . Using the SL(g)-invariance of f and the fact that
transition matrices of Symd∧3g−3 Sym2 E correspond to an SL(g) coordinate change, we conclude that there
exists a section of Symd∧3g−3 Sym2 E that maps to a generically non-vanishing section of Symd∧3g−3

π∗
(
ω̃2
)
.

Since
∧3g−3

π∗
(
ω̃2
)

is a line bundle on B, we conclude that

c1

(
3g−3∧

π∗
(
ω̃2
))
≥ 0.

It follows that c1
(
π∗
(
ω̃2
))
≥ 0.

Since c1π∗
(
ω̃2
)

= λ2 − 2λ(3g − 3)/g, we conclude

13λ− δ = λ2 ≥ 2(3g − 3)λ/g,

which gives the desired inequality

δ

λ
≤ 7 +

6
g
.

5.1 Bielliptic curves

As [22, Example 4.3] shows, certain double covers of trivial families of elliptic curves give rise to families of
bielliptic curves of genus g and slope 8; for reader’s convenience, we recall this construction below. Interestingly,
Barja proved that any family of curves with a bielliptic generic fiber has slope at most 8 and those of slope 8
are necessarily double covers of isotrivial families of smooth elliptic curves [5, Theorem 2.1].

Example 5.1 (Bielliptic family of slope 8, cf. [22, Example 4.3]). Let E be a curve of genus one. Consider
a constant family X := E ×B and a divisor D ⊂ X of relative degree (2g − 2) over B. Since KX = π∗KB ,
adjunction gives KD − π∗KB = (KX +D) ·D − π∗KB ·D = D2. Thus the number of branch points of D → B
is D2 by Riemann-Hurwitz formula. Consider now the double cover Y → X branched over D. The singular fibers
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of Y → B correspond to branch points of D → B. Assuming the branch points are simple, we conclude that
δY/B = D2. On the other hand, by Mumford’s formula

12λY/B − δY/B = κY/B = 2(ωX/B +D/2)2 = D2/2.

It follows that
λY/B = D2/8 = δ/8.

We now contrast the computation of Example 5.1 with Theorem 1.2. Since 8 > 7 + 6
g for g ≥ 7, Theorem

1.2 implies that the canonically embedded general bielliptic curve of genus g ≥ 7 must have a non-semistable
2nd Hilbert point. In fact, we have a more precise result.

Proposition 5.2. The 2nd Hilbert point of a canonically embedded smooth bielliptic curve of genus g ≥ 7
is non-semistable. The 2nd Hilbert point of a canonically embedded smooth bielliptic curve of genus g = 6 is
strictly semistable.

Proof . Consider a genus one curve E ⊂ Pg−2 embedded by a degree g − 1 complete linear system. There are(
g
2

)
− (2g − 2) =

(
g+1
2

)
− 3(g − 1)− 1 quadrics containing E. It follows that a projective cone Cone(E) over E

in Pg−1 is cut out by one less quadric than a smooth canonical curve. In fact, any smooth quadric section
of Cone(E) is a canonically embedded bielliptic curve of genus g, as can be easily verified using adjunction,
and conversely every canonically embedded bielliptic curve lies on such a cone. If C ∈ |OCone(E)(2)|, then there
are

(
g+1
2

)
− 3(g − 1)− 1 quadrics in H0(C, IC(2)) that are singular at the vertex of Cone(E). Suppose the

vertex has coordinates [0 : 0 : . . . : 0 : 1]. If now ρ is the one-parameter subgroup of SL(g) acting with weights
(−1,−1, . . . ,−1, g − 1), then the ρ-weight of any monomial basis of H0(C, IC(2)) is at most

−2
((

g + 1
2

)
− 3(g − 1)− 1

)
+ 2(g − 1) = −g2 + 7g − 6 = −(g − 1)(g − 6).

Thus a bielliptic curve has non-stable 2nd Hilbert point for all g ≥ 6, and non-semistable 2nd Hilbert point for
all g ≥ 7.

It remains to establish the semistability of a canonically embedded smooth bielliptic curve of genus 6. By
above, every such curve degenerates isotrivially to a double hyperplane section of a cone over a genus one curve
of degree 5 in P4. The semistability of this non-reduced curve follows from Kempf’s results [14].
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