The Shape of Reality?

How Straight Lines Can Bend
in Non-Euclidean Geometries

If there is anything that can
bind the heavenly mind of man
to this dreary exile of vur earthly
home and can reconcile us with
our fate so that one can enjoy
living-—then it Is verily the
enjoyment of the mathematical
sciences and astronomy.

—Johannes Kepler

+7athematics can help us understand the cosmic, the unapproach

{ than the entire universe. For thousands of years, people have pon
dered the fundamental question: What is th
shape of our universe?

In any attempt to understand the worl
avound us, it is only natural to wonder abou
the geometry of our physical existence. Of
course, our universe is incredibly vast, and ou
experience is limited by time and space. Thu
our question is by no means easy. Does spac
bend or curve? What does it even mean fo
space to bend or curve? Since we do not se

~ space bending or curving around us, our int
tial sense is that space is-flat. However, W
exist on such a microscopic scale compared to:
that of the entire universe, perhaps we don
sense the reality of the “big picture.” S0 let
apply some of our techniques of analysis ai
try to discover the shape of space.

i able, and the mysterious. Nothing is more cosmic and mysterious :
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In dealing with life's First, we look at the ground under and
- compiex issues, start  just around our feet. What do we see? Flat,
- with the simple and - Thus, it seems reasonable to guess that

puild from there.  our world around us is fat like a plane. This
guess is not completely crazy, especially to
those who live in Kansas. The world around
us does tend to look pretty flat. This obser-
vation led people throughout history to
study the flat plane and its rich geometry.
However, it turns out that our Earth is
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A First Sketch of the “Big Picture”

How do we start to understand the geometty of something so large that
it is beyond our understanding? Start by looking at something smaller.

shaped like a ball. This nontrivial fact
illastrates  +wo important points.
First, there is no pressing need for |
the Flat Earth Society, and second, |
what we observe locally may not |
accarately depict what is occurring ‘
on a larger scale. {
Before taking on the whole uni- .
verse, perhaps we should consider [
|

A Next Sketch: The Geometry of a Sphere

What is the shortest distance between two points? In a flat, unobstructed
world, that shortest distance is always a straight line. But in New York City

the shortest distance from
Sth Ave. and 42nd St. to
8th Ave. and 38th St. is not
a straight line. What path
does the crow take? If the
crow drove a taxi, he
would find the shortest
path, but that path would
follow the grid of streets.
So the shortest paths
between two points—the
“straight  lines”—depend
on the shape of the space
where we live, We live on
Farth. So what are the
“straight lines” on Earth?
Let’s travel around and see.
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the geometry of the next simplest
realm: the sphere,
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Since the Earth is round, we do not live on a plane; yet many travel.
ers live in a plane a good deal of the time. Pilots have a great attachmen
to fuel and hate to run out of it at 35,000 feet in the air. Thus, airplanes
go from place to place along the shortest routes possible. Pilots, like crows,
fnow the Earth is round and choose their routes accordingly. Let’s see
what those routes are. The best method for bringing this point home
would be for you to now take a nonstop plane trip from Chicago, llinois

to Rome, Ttaly. We'll wait patiently, but you had better send us a posteard, "

Traversing Your Travels

Chicago and Rome are both at the latitude of nearly 40° north. You might

think that the shortest route from Chicago to Rome
would be to stick to the 40° latitude line the whole
way. Let’s measure how far that route would be.
We will do this by measuring distances on a
globe and using the scale to tell the mileage. If
we take out a tape measure and place it along
the 40° latitude line, we see that the distance is
5,300 miles. Is there a shorter route? If we're fly-
ing the plane, we had better find out.

A good, though messy, way to find the short-
est route uses a greased globe and a rubber

band. We take the globe and grease it until it is so slippery that nothing, -
including the rubber band, will stick to it. We next put two pins in the :
globe, one at Chicago and one in Rome, and then stretch a rubber band
over the two pins. We first hold the rubber band down so it sits on the -
latitude line. Then we let go. Did it stay on the 40° latitude line? We -

don’t think so. In fact, it slid up to a shorter route. Instead of flying alon

the latitude, the rubber band found a genuinely shorter route. Notice that
the route heads north and goes over Labrador and
rubber band's Dublin, Ireland before heading back south on its -

path = 4,800 miles way to Rome.
Is this route really shorter? Let’s measuie
We placed our measuring tape along our ney
route and measured
about 4,800 miles. This The arc palh is part
of a "great circle”.
new route saves about
500 miles!
Let’s take a closer
look at this rubber-band
route. If we extend the
route, we get a great circle that is as big as pos-
sible going around the whole globe—that is, a
circle whose center is at the center of the globe.
1t is as long as the equator.

path shown = 5,300 milss -
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Indeed, the shortest path between any two points on the globe is always
a great circle that contains them. The segments of great circles are the
shortest distance between two points on the globe. Why?

Why Great Circles Are the Way to Go

Let’s think about why the great circle segments are
the shortest paths. If the Earth were hollow, the
shortest path from Chicago to Rome really would
be a straight line inside the Earth. So for our
purposes, let’s imagine a straight-line tunnel
connecting Chicago and Rome burrowing right
through the Earth. The shortest voute on the sur-
face of the Earth would deviate as little as possi-
ble from that straight, underground Chicago-Rome
funnel.
Let’s notice something about circles and lines. If we take
two points and make a circle that contains them, then bigger cir-
cles are flatter and therefore stay closer to the straight line

The larger the
circle—the “flatter”
the segment.

between the two points. So, among the paths that stay on cir-
cles, taking the biggest circle on the globe containing
Chicago and Rome—that is, the great circle—will
stay closest to the straight line. The latitude circle,
being smaller, bends out

T more from the straight
line and is therefore
longer. “Straight lines,”
that is, the shortest
paths on Earth, are
great circle segments.

Latitude is longer.

Distances in a Different World

We live on Earth, which is essentially a ball, but how about a bug on
the wall? If our bug doesn’t fly, its world

is in the shape of the walls. So, L,,ﬁ_nﬂ/’

when it sees its dining destina- ! |

tion on some other wall, it has Bug—> 3 ! | &~ Food
some serious calculations to B b _m! s
perform, What is the shortest Lo L

distance {from here to dinner?
Take a guess.

shortest path?
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A good guess would be the path shown in the figure on the left.

Bug | T Is this guess the shortest path? Sup- .
\“‘”"'——““/ pose dinner is on the same wall. Then o T:_c?
i T ¢ the situation is easy. The bug simply - 15, o .
| L &‘\_ walks in a straight line. i /'L ug _Food - | _H_"'

an initiat guess for
the shortest path

Think about some-
simple cases.

Can you think of other
ways of unfolding the
walls, keeping the food
and the bug in the same
refative locations?

¢
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The bug is off to a great start. How
about if dinner is on an adjacent wall?
It is pretty clear that the bug needs to go straight to the bounday
edge and then straight on the next wall to its 1
dinner. The guestion is, “Where on thatedge 71
should it cross®” Describe a method for
locating the best crossing place.

Food shortest path = straight line

Notice that, if the walls were at some
angle other than 90°, the distances from the
bug to the crossing point and the crossing :
point to dinner do not change. So let’s consider a different question. -
Suppose the bug is on an open door, and its dinner is on the wall, - -

where to ¢ross the edge?

“hinged door” 1 ) |
I
|
|

& Food

|

Imagine that, as the bug is considering its shortest path, someone comes.
along and closes the door. Suddenly the question becomes much easie
Now the bug and its dinner are on the same wall, and the bug simply pro-:
ceeds in a straight line. Now the bug is on a roll.

Let’s now retum Lo the scenario where the bug’s dinner is on the oppo-
site wall. How will it figure out the shortest route? Having experienced
the closing of the door, surely our bug cannot resist the idea of unfold
ing the walls, The
problem is that there
are many ways fo
I unfold the walls.

shortest patht

Soimetimes, whe
we gre faced wi
a prodlent and w
don't know viat
do, we should ju

consicier everythin,
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Which one should the bug
choose? The straight lines on
some unfolded walls from bug
to dinner are different

lengths from others. s
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What to do?

Some straight paths are shorter than others.

One method would be to unfold the room in all possible ways and
measure the straight-line distances. We've seen several different room-
unfolding possibilities. Notice that different unfolding scenarios result in
different placements of the food and the bug. Visualize the reassembly of
the flattened rooms and verify that the relative positions of the bug and
the food are always the same. Once we find the
shortest flattened path, we can draw the straight
line on that unfolded version and then
reassemble the room. In this case, the
shortest path takes the bug over five
walls-—a dramatic departure from our
first guess.

o N

shortest path

Now we have a better sense of shortest paths and straight lines in var-
ious worlds, including our own earthly sphere. Putting these straight lines
together allows us to explore some basic geometry that captures the
essence of the graceful curvature of the sphere. Let’s put three straight
lines together to make a {riangle.

Triangles on the Sphere

Draw any triangle in the plane. Add up the three angles. The result is
180°,

o

Cut off angles. Sum is 180°.

But we've seen that, in different realms, we have different ideas of straight-
ness. Let’s now explore the angles of a triangle made out of straight lines
on a sphere. We begin by drawing a large triangle on a sphere. For exam-
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ple, let’s put one vertex on the north pole, one vertex o -
the equator at 0° fongitude, and the third vertex on the i
equator at 90° longitude. The edges of this triangle .
consist of two longitudinal segments from the non}, -
pale to the equator and a segment that goes Vi of the
way around the equator. What are the angles at each :
vertex? Fach one is 90° So, what is the sum of the
three angles of that trangle on the sphere? 90° + gge -
+ 90° = 270°. Yikes.

Curvaiure of the spt
caudes "straight fin
o bow out a bit.

vo 4 o = 480°

This result is slightly disconcerting. The sum of the angles of this ti.
angle on the sphere is not 180°, but 270° {90° too much). Is it possible :
that all triangles on the sphere have angles that sum to 270°? Let’s see,
Take the big triangle above and break it into two by drawing in the
longitudinal segment from the north pole down to the
T equator at 45°. _
Now each of the half-sized triangles has angles
of 90°, 90°, and 45°. That sum is 225% 45° more thap -
| the 180° we would have in a triangle on the fat
~h thoid~] plane. This result is stranger still, since not only do -
T the angles fail to add up to the comfortable 1807 we
RIS know and love, but now we see that on a sphere, dif.
ferent triangles have different sums of angles. As always, -
we must Jook for patterns. ) :
Can we find any regularity among our measurements? The big trian- |
gle had 270°, 80" degrees too much. When we divided it in half, each half
had 295°, 45° degrees more than 180°. Did you notice that:
the total surplus of angle for the two smaller triangles
stayed at 90°7 In other words, when we took the bi
triangle and measured the surplus angle bigger than
180°, we got 90°. Then, when we divided the big tii
angle into two smaller triangles, each of the halves
had a surplus of 45°, or 90° altogether. Suppose we.
start with any triangle on a sphere and cut it in half”
by bisecting one of the angles.
What is the relationship between the angles of
the original triangle and the angles of each of the tw
subtriangles? Well, the new angles created add up to 180° since they an
' on a straight line. So, the total excess of the two triang]
must be equal to the excess for the original big triangl
Notice what happens if we take a small triangle:
HHHHH on the sphere. What is the surplus of its angles? Net:
LT very much. A small part of a sphere is basically fla
so the angles of a triangle there will have almo
exactly the same angles as the angles of a triangle 0
a flat plane. So, it seems that larger triangles ha
greater excess in the sum of their angles than small t
Sum is just a smidge angles do. Furthermore, if a large triangle is divide
greater than 180°. into smaller triangles by adding edges, since all
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added angles created are along straight lines or divide existing angles, the
total excess of all the subtriangles making up a bigger triangle must be the
same as the excess of the big triangle. What corresponds to the excess? Tt
turns out that the excess increases as the area of the triangle increases.
Thus, we see that the sum of the angles of a triangle on a sphere will
always exceed 180° but that small triangles will just barely exceed 180° and
large triangles will exceed 180° by a more substantial amount.

Extra Degrees Through Curvature

The fact that the sum of the angles-of any triangle on a sphere exceeds
180° is due to the curvature of the sphere. And, since every triangle has
a sum of angles exceeding 180°, we will say the sphere has positive cur-
vature. Notice that the curvature on a sphere can be determined by mea-
surements taken on the sphere itself, It is not necessary to see the sphere
from cutside. For example, suppose we were bugs whose whole universe
was a sphere. Perhaps light stayed right along the sphere so that we could
see things. We would not see a horizon, because the light would bend
around the sphere providing us with ever more distant vistas. Neverthe-
less, we could determine that our world has positive curvature by draw-
ing a triangle and measuring the sum of the angles. Even though the indi-
vidual lines would appear completely straight, the sum of the angles would
be more than 180°, clinching the positive-curvature claim.

We now have one space, the plane, where all triangles have angles
that add up to 180°. That constant sum is our benchmark, so we will say
the plane has zero curvature—it is flat. We saw another space, the sphere,
with positive curvature where all triangles have angles that add up to more
than 180°, Surely we cannot resist asking the question, “Is there a space
with negative curvature—that is, where the sum of the angles of a trian-
gle is less than 180°P”

Geometry on a Saddle

Horseback riding provides us not only with a sore bottom but also with
an interesting geometrical opportunity. The surface of a saddle has an
appealing shape and provides a surface ripe for experiments using rubber
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3D picture of a saddle
{Use your 3D glasses from
your kit.)

triangle on the surface of a
saddle {Angles sumto
less than 180°.)
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bands and butter. Suppose we place three pins as shown, one near the
front of the saddle and two near the stirrups. (This is a poor time to actu-
ally sit on the saddle.} We now grease the saddle with butter and put 2
rubber band around every pair of pins. The rubber bands will slide to the
shortest distances between pins. So, we will have a rubber band triangle
on the surface of the saddle. We now wish to measure the angles. If you
don’t happen to have a saddle handy, look at the following picture, est-
mate the measure of the angles, and compare the sum of the angles to




jown, one near the
a poor time to act
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ubber band triangle
e the angles. If you

180°. The sum of the angles of this triangle is less than 180,
Of course, the rubber-band method will not always work on
a saddle since the line between some pairs of points, like
the center front to the center back of the saddle, would
leave the surface and float in the air. However, rubber 3

, . um of the angles
bands are good tools for finding the shortest distances s fess than 180°.
between some pairs of points on the saddle. Whether you
use rubber bands or another method for finding the shortest distances
between points, triangles on the saddle will have sums of angles less than
180°, because the sides of the triangles curve inward and thus cause those

angles to shrink. So this space has negative curvature and is an example

of the exotic world known as hyperbolic geometry.

We have seen three different types of geometries: plane geometry,
which we say has zero curvature (all triangles have angle sums of exactly
180°); spherieal geometry, which we say has positive curvature (angle sums
vary depending on the size of the triangle, but always exceed 180°); and
hyperbolic geometry, which we say has negative curvature (angle sums
vary depending on the size of the triangle, but always are less than 180°).
It certainly appears as though hyperbolic geometry is exotic and foreign
to our real-world existence, which brings us back to our original question:
What is the shape of our universe?

The Shape of our Universe

We have just caught glimpses of three types of gecometries: planar, spheri-
cal, and hyperbolic. Which is our universe? How could we tell which geom-
etry accurately models our universe? Think of an experiment that we could
perform to answer this. (Hint: What property distinguishes the three?)
Lets measure the angles of triangles. Suppose we make a big triangle
and measure its angles, If the sum of those angles equals 180°, then we would
conjecture that our universe has zero curvature. If the sum of those angles
exceeds 180°, then we’d guess that our universe has positive curvature. If the
sum of those angles is less than 180°, then we’d guess that our universe is
curved negatively. Would anyone actually attempt this experiment? Yes!
The great mathematician Carl Friedrich Gauss tried this experiment
in the early 1800s. He formed a triangle using three mountain peaks near
Gottingen: Brocken, Hohenhagen, und Inselsberg. He had fires lit and
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used mirrors to reflect the beams of light to form a triangle having side
lengths roughly 43, 53, and 123 miles. He carefully measured the angles
of the triangle and added them up. His sum was within 1/180 of a degree
of 180°. That small difference could easily have been caused by errors in
measurement. This evidence certainly leads us to think that our universe
is neither positively nor negatively curved and that the universe is fla,
What is the problem with this conclusion? Think about this question in
view of our spherical geometry ohservations.

Recall that, in spherical geometry, if we have a small triangle, then
the triangle is nearly flat, and thus the sum of its angles is nearly 18¢°,

" Thus, although Gauss’s triangle was big, compared to the entire universe

it wasn't even a speck. Thus, on such a microscopic scale, it is not sur-
prising to see that the evidence points to a geomelry having zero curva-
ture. We would need an enormous triangle to detect the existence of any
actual curvature. Is this experiment even practical? And if it were, would
anyone actuaily attempt it?

The answer to the first question is possibly and to the second is yes,
Today scientists believe that the universe exhibits two important proper-
ties. The first is that it is homogeneous, which basicaily means that any two
large sections of space will look the same—of course here “large” needs
to be LARGE. The second is that the universe is isotropic, which means
that, as we look around, things look about the same in every direction. It
turns out that we can find geometrical objects that are homogeneous and
isotropic that are either planar, spherical, or hyperbolic. This fact leads to
a question of great interest to scientists today: Does the universe have
zero, positive, or negative curvature?

A large group of scientists now believe that the universe is negatively
curved—that is, that the geometry of the universe is actually the exotic
hyperbolic geometry suggested by the saddle. In fact, a conference was
held in October 1997 at Case Western University that brought together
20 cosmologists and 5 mathematicians to discuss the possible shape of the
universe and how to measure its curvature. NASA is scheduled in 2000 to
send MAP—the Microwave Anisotropy Probe—into space. This probe
will measure microwave background radiation, which is a residue of the
“big bang,” By studying slight variations in the measurements—which are
actually temperature measurements—scientists are hoping to discover the
exact geometry and curvature of the universe. It will take about two years
to map out the heavens with the probe and another four years for scien-
tists to analyze and collect the data. European scientists plan to send up
the Planck Probe in about six years. This probe should be able to make
even more careful measurements of the variations in microwave radiation.
These modern experiments capture the spirit of Gauss’s attempts to mea-
sure the curvature of the universe,

So, what is the shape of our universe? Although many experts believe
it may be hyperbolic and negatively curved; no one knows for certain.
However, 21st-century science and technology together with mathematics
may enable us one day to measure the curvature of our vast space and
understand its subtle and beautiful geometry.
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pace can have various shapes. We can distinguish how space bends by
Sexamining the shortest paths—straight lines, although they may not
necessarily be straight. Three different kinds of geometry are planar, -
spherical, and hyperbolic. The Hat plane, round sphere, and saddle are
good models for planar, spherical, and hyperbolic geometries, respectively.
On a very small scale all look nearly the same, and thus we have not yet
been able to determine the shape of our universe by taking measurements
of our local environment. However, some scientists now believe that the
universe may be hyperbolic, and experiments are being devised to give
evidence about the geometry of space.

The distinguishing feature of the three different geometries is their
curvature. If a space has zero curvature {the sum of the angles of any tri-
angle is exactly 180°), then the space is flat. If a space has positive curva-
ture {the sum of the angles of any trangle exceeds 180°), then the space
is spherical. Finally, if the space has negative curvature (the sum of the
angles of any triangle is less than 180°), then the space is hyperbolic.

When we wish to consider big issues it is often valuable to start with
simple and familiar models or examples and build from there. By identi-
fying both similarities and differences in our various examples, we can
often discover the underlying structure that determines the general case.

Start with the simple and build from there,
When you don't know what to do, consider everything.

Look for patterns.

1. SOLIDIFYING IDEAS

1-3. Travel agent. Getl a glbbe and trace the shortest paths between
the following pairs of cities. Match each pair in the left list with the
location in the right list that is on the shortest path between them.

Austin, Texas—Tehvan, Iran Reykjavik, Iceland
Williamstown, Massachusetts—Beijing, China  Denali, Alaska
Austin, Texas—Beijing, China near the north pole

°In the Mindseapes section, exercises marked {H} have hints for solutions at the back of the book.
Exercises marked (8) have sclutions.
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