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Abstract. We study the Cox ring and monoid of effective divisor classes ofM0,n
∼= BlPn−3, over

an arbitrary ring R. We provide a bijection between elements of the Cox ring, not divisible by any
exceptional divisor section, and pure-dimensional singular simplicial complexes on {1, . . . , n − 1}
with weights in R\{0} satisfying a zero-tension condition. This leads to a combinatorial criterion for
a divisor class to be among the minimal generators for this monoid. Many classical triangulations of
closed manifolds yield minimal generators, and we translate some previously studied divisor classes
into this simplicial language. For classes obtained as the strict transform of quadrics, we present
a complete classification of minimal generators, generalizing to all n the well-known Keel-Vermeire
classes for n = 6. We use this classification to construct, for all n ≥ 7, (1) divisor classes whose
effectivity depends on R, (2) necessary generators of the Cox ring whose class does not lie on an
extremal ray of the effective cone, and (3) counterexamples to the Castravet-Tevelev hypertree
conjecture (and for n ≥ 9, new extremal rays of the effective cone). We conclude with several open
questions and topics for further investigation.

1. Introduction

Determining the pseudo-effective cone, the closure Eff(X) ⊆ N1(X) of the cone of effective
divisor classes on a projective variety X, is a familiar and challenging problem in geometry. A
related structure, defined when the Picard group Pic(X) is finitely generated, is the Cox ring, or
total coordinate ring [Cox95, HK00]:

Cox(X) :=
⊕

L∈Pic(X)

H0(X,L).

This ring is graded by Pic(X), and the support for this grading is the monoid of effective divisor
classes, sometimes denoted M(X), which forms a collection of distinguished lattice points in the
effective cone. Given a set of generators for Cox(X), their classes in Pic(X) yield a set of generators
for M(X), and the limits of the rays spanned by these classes in N1(X) generate Eff(X). However,
Cox(X) need not be finitely generated, even if Eff(X) or M(X) is, so computing a presentation
of the Cox ring is often not a plausible way to study effective divisor classes. Moreover, the list
of generators one obtains (whether finite or not) from generators of the Cox ring can be massively
redundant. When Pic(X) is finitely generated and torsion-free, there is a unique minimal generating
set for M(X) which is typically quite geometrically meaningful. For instance, if X is a del Pezzo
surface then the minimal generators for M(X) are the classes of the (−1)-curves and this provides
a bridge to many beautiful areas of representation theory and combinatorics.

The Cox ring, effective cone, and effective monoid are usually studied over the complex num-
bers, since that is where the strongest geometric tools are applicable [Laz04]. However, they may
be defined more generally if X is defined over other rings and can encode important arithmetic
information in such cases.

In this paper we develop a systematic framework for studying the Cox ring and monoid of effective
divisor classes for the moduli spaceM0,n of n-pointed stable rational curves, valid over any ring R.

We crucially rely on the Kapranov-Hassett presentation of M0,n over SpecZ as an iterated blow-
up of Pn−3 along linear subspaces [Kap93a, Has03], which in turn leads to a description, over the
integers, of Cox(M0,n) as a subring of invariants of a Pic(M0,n)-graded polynomial ring [DG13].
As there are no torsion issues, and Picard groups are canonically identified upon base change, there
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is no choice of isomorphism class of universal torus torsor and the Cox ring is well-defined and
may be studied over R via its presentation over Z. Questions about Cox(M0,n) date back to the
introduction of the notion of a Cox ring [HK00], and studying the collection of effective divisors
in M0,n has been central to a burgeoning industry for a myriad of moduli spaces [CFM12]. It

has very recently been shown that Cox(M0,n) is not finitely generated when n ≥ 134 and R is an

algebraically closed field of characteristic zero [CT13b]. However, finite generation of Eff(M0,n)

and M(M0,n) remains an open question for all n ≥ 7. Rather than focusing on finite generation,
however, we turn to questions such as the following:

(1) How do the Cox ring and effective divisor classes depend on the base ring R?
(2) Is the first lattice point of every ray of the effective cone an effective divisor class?
(3) Does a minimal generating set for the Cox ring yield one for the effective monoid or cone?
(4) Are there classes spanning rays outside the previously known subcone of the effective cone?
(5) What other geometric structures are related to the minimal generators of these objects?

We find that the answer to all of these questions changes drastically when passing from n ≤ 6 to
n ≥ 7. The following gives a flavor of our findings, all of which are provided by explicit examples.
Question (5) is addressed in §1.2, where detailed versions of these and other results are presented.

Theorem 1.1. Fix n ≥ 7 and consider M0,n relative to an arbitrary field k.

(1+2) There are rays in N1(M0,n) that are effective in all characteristics, yet their first lattice
point is effective if and only if char(k) = 2;

(3) The monoid M(M0,n) is not generated by the divisor classes spanning extremal rays of

Eff(M0,n), hence the ring Cox(M0,n) is not generated by the sections of such divisor classes,
when char(k) 6= 2.

(4) There are effective rays outside the cone of boundary and hypertree divisors, thereby dis-
proving a conjecture of Castravet and Tevelev [CT13a].

Remark 1.2. While preparing this preprint we were informed that Opie had simultaneously con-
structed counterexamples to the hypertree conjecture [Opi13]. We show that, for n ≥ 9, there are
extremal rays outside the cone generated by boundary, hypertree, and Opie’s divisors.

By contrast, for n ≤ 6 the Cox ring has the same set of minimal generators for any field, the
classes of these generators form a minimal generating set for the effective monoid, and these classes
are the first lattice points of each extremal ray of the effective cone (see §1.1). For n ≤ 5 these
generators are all boundary divisors. For n = 6 there are non-boundary generators, and they are
all given, in terms of Kapranov’s blow-up construction M0,n

∼= BlPn−3, as the strict transform of
certain quadric hypersurfaces. We provide a complete classification of all minimal generators of
M(M0,n) corresponding to quadric hypersurfaces, for any n; this provides a rich enough supply of
divisor classes to construct all the examples described in Theorem 1.1.

The basis of our framework is a result in [DG13] that Cox(M0,n) is isomorphic, over SpecZ, to
the ring of Ga-invariants for an action on a polynomial ring. This polynomial ring is the Cox ring
of a toric variety, call it Xn, with the same Picard group as M0,n. The Ga-action on Cox(Xn) is
induced by one on the universal torus torsor over Xn, an open subset of affine space, rather than
an action on Xn itself. Since the grading by this common Picard group on the two Cox rings is
compatible, a divisor class onM0,n is effective if and only if the corresponding class on Xn admits
a Ga-invariant section. We encode homogeneous polynomials in Cox(Xn) by a singular simplicial
complex whose simplices are in bijection with the terms of the polynomial and are decorated with
the corresponding coefficients. Invariance under the Ga-action then translates into a zero-tension
condition that for each face of a simplex in the complex, the sum of R-weights of simplices containing
that face is zero. As we shall see, this perspective of “balanced complexes” yields a powerful new
perspective on the Cox ring Cox(M0,n) and effective monoid M(M0,n), and, like the case of (−1)-

curves on a del Pezzo surface, it ties the geometry of effective divisors in M0,n to many beautiful
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classical constructions, such as triangulations of the sphere and other closed manifolds. We list
several open questions and areas of further study arising from this perspective in §6.

1.1. Previously known results and constructions. Throughout this paper we fix an isomor-
phism M0,n

∼= BlPn−3, i.e., a choice of ψ-class. This isomorphism was originally provided by
Kapranov over SpecC [Kap93a], but work of Hassett extends it to be defined over SpecZ [Has03,
§6]. This yields a Z-grading on Cox(M0,n) and Pic(M0,n); indeed, by the degree of a divisor or its

class we shall mean the image under the map Pic(M0,n) → Pic(Pn−3) ∼= Z induced by the above
blow-up presentation. Thus, the degree of an effective divisor is zero if it is a union of exceptional
divisors and it is simply the degree of its image as a hypersurface in Pn−3 otherwise.

The first conjecture concerning effective divisors inM0,n was given by Fulton, although formally

stated by Keel and McKernan in [KM96]. It asserts that Eff(M0,n) is spanned by the classes of
boundary divisors, extending the del Pezzo situation of n = 5 and inspired by the geometry of
toric varieties where boundary strata do indeed span all effective classes. Put another way, this
conjecture says that the effective cone is generated by classes of degree at most one. However, Keel
and Vermeire simultaneously found degree two counterexamples for n = 6 [Ver02, GKM02]. Hassett
and Tschinkel, with the help of computer calculation, verified that for n = 6 the Keel-Vermeire
classes, together with the boundary classes, do in fact span the entire effective cone [HT02].

The question remained of whether the unique (up to scalar) sections of these divisor classes
generate Cox(M0,6). Here Castravet performed a comprehensive analysis of this particular case
and found a positive answer to this question [Cas09]. This implies that the effective monoid
M(M0,6) is also minimally generated by the boundary and Keel-Vermeire classes, so essentially
everything is known here and attention now turns to n > 6. Many experts believed the Keel-
Vermeire classes in n = 6 must be part of a more general construction valid for all n, yet this vast
generalization proved rather elusive. A breakthrough was made in 2009 when Castravet and Tevelev
found a construction (summarized in §5.1) that yields all Keel-Vermeire classes in n = 6 and a huge
number of new extremal rays for n ≥ 7. They conjectured that the boundary classes together with
these so-called hypertree divisor classes span Eff(M0,n) for all n [CT13a]. Additionally, they raised
the question (and called it a “pipe dream”) of whether, as with n = 6, it is always the case that
the Cox ring is generated by sections of divisor classes spanning extremal rays of the effective cone.
One could weaken this dream slightly and ask for the effective monoid M(M0,n) to be generated
by classes lying along extremal rays. As we shall see below, these dreams fail for all n ≥ 7, as does
the hypertree conjecture (see also Remark 1.2 concerning Opie’s exciting paper [Opi13]).

Along with the remarkable recent result of Castravet and Tevelev that Cox(M0,n) is not finitely

generated for n ≥ 134 [CT13b], or in other words, that Hu and Keel’s dream for M0,n is also false
[HK00], we are left once again in a quandary: one hopes that there is some order to the seemingly
chaotic and unwieldy collection of effective divisors and divisor classes on M0,n, yet the challenge
is to find a structure that best describes it and reveals how truly complex it is.

1.2. Precise statement of new results and constructions. For us, a (possibly singular) d-
simplex is a multiset of cardinality d+ 1, and a pure-dimensional simplicial complex of dimension
d, or “d-complex”, with vertex set [n − 1] := {1, . . . , n − 1} is any set of d-simplices with entries
in [n − 1]. Thus, a 1-complex is a graph with loops allowed but multiple edges disallowed. For
a multiset S, the number of times i ∈ S occurs is its multiplicity, denoted multi(S). We call a
complex “non-singular” if every element of every simplex in it has multiplicity at most one.

Fix a ring R and consider M0,n relative to SpecR. A weighted complex is an assignment of a
nonzero element of R to each simplex in a complex, and a weighted complex is “balanced” if, for
each face, the sum of the weights of simplices containing it is zero (see Definition 3.2 for details).
It is “balanceable” if there exists a collection of elements of R \ {0} satisfying this property. For
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any d-complex ∆ on [n− 1] we define a degree d+ 1 divisor class D∆ as follows:

D∆ := (d+ 1)H −
∑
I

(
d+ 1−max

σ∈∆

{∑
i∈I

multi(σ)

})
EI ∈ Pic(M0,n).

Here I ⊆ [n − 1] satisfies 1 ≤ |I| ≤ n − 4 and EI denotes the corresponding exceptional divisor.
The following result is where we crucially use the identification in [DG13] (and summarized in §2)
of Cox(M0,n) with an explicit ring of Ga-invariants:

Theorem 1.3. For any d ≥ 0 and n ≥ 5, there is a natural bijection between degree d + 1 multi-
homogeneous elements of Cox(M0,n), not divisible by any exceptional divisor section, and balanced
d-complexes on [n− 1]. All balancings on a complex ∆ correspond to elements with class D∆.

We call a complex “minimal” if it is balanceable yet no proper subcomplex is balanceable. For
a d1-complex ∆1 and a d2-complex ∆2, their product is the (d1 + d2 + 1)-complex ∆1 · ∆2 with
simplices σ1 ∪ σ2 where σi ∈ ∆i. Recall that the monoid M(M0,n) of effective divisor classes has a
unique collection of minimal generators (cf., Remark 3.18). We can now state our main results on
complexes and divisor classes:

Theorem 1.4. Fix integers d, n as above.

(1) Let D ∈ Pic(M0,n) be a class such that D−EI is not effective for any I. Then D is effective
if and only if there is a balanceable complex ∆ with D∆ = D.

Assume now that d ≤ n− 5 and ∆ is a non-singular d-complex.

(2) Suppose that every proper subcomplex ∆′ ( ∆ is not balanceable. Then D∆ is effective if
and only if ∆ is balanceable.

(3) If ∆ is minimal and R is a field then h0(M0,n, D∆) = 1. If, moreover, there is no de-
composition ∆ = ∆1 · ∆2 with ∆i minimal non-singular complexes supported on disjoint
subsets of [n − 1], then D∆ is a minimal generator of M(M0,n) and every generating set

for Cox(M0,n) includes the unique (up to scalar) section of D∆.

These results, as well as Theorem 1.3, are all stated and proven in §3. Turning now to 1-complexes
(i.e., graphs) and their corresponding degree two divisor classes (i.e., strict transforms of quadric
hypersurfaces) we have the following (see §4.1):

Theorem 1.5. Fix a base field k. The minimal generators of M(M0,n) with degree two are precisely
the classes D∆ where ∆ is either (cf., Figure 2):

(1) an m-gon with m ≥ 6 even,
(2) an m1-gon meeting an m2-gon at a single vertex, with both mi ≥ 3 odd, or

(3a) (when char(k) = 2) the disjoint union of an m1-gon and an m2-gon, with mi ≥ 3 odd;
(3b) (when char(k) 6= 2) an m1-gon connected by a path of any length of bivalent vertices to an

m2-gon, with mi ≥ 3 odd.

In particular, for any n ≥ 6 we have non-boundary classes, not pulled-back along a forgetful map,
that are minimal generators over any field. The divisor classes appearing in this classification, and
closely related ones, exhibit some interesting previously unobserved phenomena—specifically, that
of Theorem 1.1. If ∆ is a 1-complex given by two triangles connected by a single edge (Figure
3) then 2D∆ is a sum of boundary classes (cf., Example 4.8) so the class D∆ does not span an
extremal ray of Eff(M0,7), even though it is a minimal generator of M(M0,7) and its unique (up

to scalar) section is a necessary generator for Cox(M0,7), when char(k) 6= 2. If ∆ is the 1-complex
of edges in a disjoint union of two triangles, then D∆ is effective if and only char(k) = 2, yet it
turns out (see §5.4.2) that 2D∆ is effective in all characteristics. Moreover, the ray spanned by
this class lies outside the cone of boundary and hypertree divisors (Corollary 5.11), so it yields an
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n = 7 counterexample to the Castravet-Tevelev conjecture and its pull-backs along the forgetful
morphisms thus yield counterexamples for all n.

If ∆ is the 1-complex of edges of an octagon, then D∆ spans an extremal ray of Eff(M0,9) which
is also a counterexample to the hypertree conjecture (§5.4.1). We prove extremality by constructing
a curve that covers this divisor and intersects it negatively. To see that this ray is distinct from all
the extremal rays spanned by hypertree divisors, we prove in §5.2 that the only hypertree divisors
of degree two for some choice of ψ-class are the unique n = 6 hypertree (the Keel-Vermeire class,
which we identify as D∆′ where ∆′ is the edges of a pair of triangles meeting at a single vertex) and
the unique n = 7 hypertree (which we identify as D∆′ where ∆′ is the edges of a hexagon). Note
that this extremal ray spanned by D∆ for ∆ the octagon is also distinct from the extremal rays
recently found by Opie, since those all have degree greater than two [Opi13]. In §1.3 we illustrate
the correspondence of Theorem 1.3 with this particular choice of ∆.

In §4.2 we give some examples of minimal complexes yielding divisor classes of degree three that
are minimal generators for the effective monoid. One of these, the faces of a cycle of tetrahedra
linked together in a precise way (see Figure 4), turns out to correspond to the unique n = 7
hypertree divisor (for a different choice of ψ-class than the one used above) when there are three
tetrahedra in the cycle. The other examples we present are well-known triangulations of the sphere
and torus. It would be interesting to understand more systematically the link between such divisors
and triangulations of closed manifolds. We conclude in §6 with a list of open questions and areas
for further research arising from the investigations in this paper.

1.3. A quadric example: the octagon. We present here an example of the correspondence in
Theorem 1.3 in the case of the 1-complex ∆ given by the edges of an octagon. The associated
divisor class D∆ ∈ Pic(M0,9) is our degree two counterexample to the hypertree conjecture for

M0,9 = BlP6. From our Ga-invariant perspective, one should view the coordinates on P6 as
differences yi − yj of the homogeneous coordinates y1, . . . , y8 on P7 (see §2). If we set

∆ = {{1, 2}, {2, 3}, . . . , {7, 8}, {8, 1}}
then this can be balanced by assigning these edges alternating elements of {±1} ⊆ R (in fact, every
balanced R-weighting is a constant multiple of this one). Associated to this weighted complex is
the quadric hypersurface in P7 defined by

y1y2 − y2y3 + . . .+ y7y8 − y8y1 = 0,

which is a cone over a quadric hypersurface in P6. If we label the 7 coordinate points as q1, . . . , q7

and the “general” point q8 := [1 : · · · : 1], then in the Kapranov blow-up the strict transform of our
quadric has class

2H −
∑

EI ∈ Pic(M0,9),

where this sum is over all permissible index sets I ⊂ {1, . . . , 8} that do not contain a pair of indices
{i, i+1} (mod 8) corresponding to an edge in ∆. Geometrically, a codimension ≥ 2 linear subspace
spanned by a collection of the qi is contained in this quadric unless two of the points are connected
by an edge in the octagon.
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2. Background: the Cox ring as a ring of invariants

Here we briefly summarize the construction and result of [DG13] that we rely on throughout. The
reader is referred to that paper for all details. Let Xn be the toric variety obtained as the iterated
blow-up of Pn−2 along all codimension ≥ 3 coordinate linear subspaces, in order of increasing
dimension. This can be viewed as the result of performing Kapranov’s iterated blow-up construction
of M0,n but in Pn−2 instead of Pn−3, so that there is a projectivity sending all of the blown-up

points to coordinate points, not just all but one of them. The Picard groups of M0,n and Xn can

be identified once a ψ-class on M0,n is chosen to induce an isomorphism M0,n
∼= BlPn−3. Indeed,

Pic(M0,n) = ZH
⊕

1≤|I|≤n−4

ZEI = Pic(Xn),

where H is the pull-back of a general hyperplane and the EI , I ⊂ [n − 1], are the exceptional
divisors.

The Cox ring of Xn, as with any toric variety, is a polynomial ring [Cox95]; write it as

Cox(Xn) = k[y1, . . . , yn−1, (xI)1≤|I|≤n−4],

where the yi define the strict transforms of the coordinate hyperplanes in Pn−2 and xI is a section
of EI . The Pic(Xn)-grading is given by

(1) [xI ] = EI and [yi] = H −
∑
I 63i

EI .

The non-reductive group Ga admits an action (non-linearizable for n ≥ 6)

xI 7→ xI and yi 7→ yi + s
∏
I3i

xI , s ∈ Ga

satisfying Cox(Xn)Ga = Cox(M0,n) [DG13, Corollary 1.3(1)]. The orbits for the induced Ga-action
on affine space yield, upon quotienting by the Neron-Severi torus Hom(Pic(Xn),Gm), the fibers of
a rational map Xn 99KM0,n. The restriction of this map to each exceptional divisor and to the
complement of the exceptional divisors is a linear projection. For instance, when n = 5 it is the
map Bl4pts P3 99K Bl4pts P2 given by projecting linearly from a point q in the base P3 and from the
point in each exceptional P2 that is the intersection with the strict transform of the line from q.

Inverting all the xI roughly corresponds to removing the exceptional divisors, in which case the
geometry is simply a linear projection Pn−2 99K Pn−3. On this localization of Cox(Xn) we have the
uniform translation action

yi
zi
7→ yi

zi
+ s, where zi :=

∏
I3i

xI ,

so the homogeneous coordinates on Pn−3 are the differences yi
zi
− yj

zj
(these generate the ring of

invariants for this action). Any hypersurface in Pn−3 is given by a polynomial in these differences,
and its strict transform in BlPn−3 is given by clearing the denominators. More formally, we have:

Theorem 2.1 (DG13, Corollary 1.3). For all n ≥ 5,

Cox(M0,n) = k[(x±1
I )1≤|I|≤n−4, (

yi
zi
− yj
zj

)i,j≤n−1] ∩ Cox(Xn).

By Equation (1) we have [yizi −
yj
zj

] = H−
∑
EI , where the sum ranges over all permissible I. The

boundary divisors are given by the xI and the binomials obtained by clearing denominators of the
differences yi

zi
− yj

zj
. Elements of the Cox ring with class that is not a sum of boundary classes are
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given by clearing denominators of a polynomial in the differences yi
zi
− yj

zj
where some cancellation

occurs when expanding it out. For instance, the Keel-Vermeire divisors are obtained from

(2) (
y1

z1
− y2

z2
)(
y3

z3
− y4

z4
)− (

y1

z1
− y3

z3
)(
y2

z2
− y5

z5
)

and its permutations.

3. Weighted simplicial complexes

Given a multiset S, we denote its cardinality (counting elements according to their multiplicity)
by |S|. The support, denoted Supp(S), is the set of elements appearing in S, irrespective of
multiplicity. Thus |Supp(S)| ≤ |S|, with equality if and only if S has no repeated elements.

Definition 3.1. For a positive integer d and a set A, by a d-simplex on A we shall mean a multiset
of cardinality d+ 1 with entries in A. It is singular if |Supp(σ)| < |σ|, and non-singular otherwise.
A simplicial complex of pure-dimension d on A, or “d-complex” for short, is any set of d-simplices
on A. We call a complex singular if any of the simplices comprising it is singular, otherwise the
complex is non-singular.

For instance, a 1-complex is a graph in which loops are allowed (and remembered as edges of the
form {v, v}), but multi-edges are disallowed.

Definition 3.2. For a ring R, we say that a d-complex ∆ = {σ1, . . . , σr} on A is R-weighted if each
d-simplex σi is assigned a non-zero element wi ∈ R. The weighted complex (∆, {wi}) is balanced
in degree j if for each multiset S with |S| = j and Supp(S) ⊆ A, we have∑

σi⊇S
wi = 0.

A weighted d-complex is balanced if it is balanced for each j ∈ {0, . . . , d − 1}, and an arbitrary
d-complex is balanceable over R if there exists nonzero elements of R making it balanced as an
R-weighted d-complex.

Remark 3.3. The sum in the above balancing condition incorporates the multiset structure of
singular simplices, so for example a loop σ = {i, i} in a 1-complex with weight w contributes weight
2w for S = {i} because we view {i} as a subset of the multiset {i, i} with multiplicity two.

Being balanced in degree 0 simply means the total weight is zero:
∑r

i=1wi = 0. This condition
is implied by the other balancing conditions in many situations, as the following result illustrates.

Proposition 3.4. Fix integers 1 ≤ ` ≤ d. If the image of
(
d+1
`

)
∈ Z under the map Z → R is a

non-zero-divisor, then an R-weighted d-complex is balanced in degree 0 if it is balanced in degree `.

Proof. Consider a weighted d-complex with notation (∆, {wi}) as above. Then(
d+ 1

`

) r∑
i=1

wi =
∑
|S|=`

∑
σi⊇S

wi

since each d-simplex has
(
d+1
`

)
faces spanned by ` vertices. The claim now follows immediately. �

Recall from the introduction that we fix an isomorphism M0,n
∼= BlPn−3, for n ≥ 5, and hence

a notion of degree of divisors and their classes. We also use the notation from §2 and work over
an arbitrary ring R—that is, all weightings of complexes are R-weightings, unless otherwise stated,
and the variety M0,n is considered relative to SpecR; in particular, Cox(M0,n) is an R-algebra.

Theorem 3.5. For d ≥ 1, there is a bijection between degree d homogeneous elements of Cox(M0,n),
not divisible by any exceptional divisor section xI , and balanced (d− 1)-complexes on [n− 1].
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Proof. Such an element of the Cox ring is a section of a divisor class corresponding to the strict
transform in BlPn−3 ∼= M0,n of a degree d hypersurface in Pn−3. As discussed in §2, these hy-
persurfaces in Pn−3 can be viewed as degree d polynomials in the rational functions yi

zi
that are

invariant under the uniform translation action yi
zi
7→ yi

zi
+ s, s ∈ Ga, and their strict transforms are

obtained by clearing denominators. Therefore, it suffices to show that balanced complexes are in
bijection with invariant homogeneous polynomials in these coordinates.

For each balanced (d− 1)-complex ∆ = (∆, {wi}ri=1), consider the Laurent polynomial

f∆ :=

r∑
i=1

wi
yσi
zσi

,

where yσi =
∏
j∈σi yj (resp. zσi) is the degree dmonomial given by the obvious multi-index notation.

The Ga-action sends f∆ to an expression that is a degree d polynomial in the parameter s ∈ Ga.

The coefficient of the sj-term is a homogeneous polynomial in the yi
zi

of degree d − j. Given a
multiset S of cardinality d− j, the sum ∑

σi⊇S
wi

appearing in the degree d−j balancing condition is precisely the coefficient of the term yS
zS

appearing

in this homogeneous polynomial. Therefore, the sj-term of our polynomial vanishes if and only if
∆ is balanced in degree d− j, and hence f∆ is Ga-invariant if and only if ∆ is balanced. �

Remark 3.6. The Laurent polynomial f∆ appearing in the above proof has divisor class indepen-

dent of the complex ∆ and the weights wi; indeed, by recalling the Pic(M0,n)-grading on Cox(Xn)
discussed in §2 one sees immediately that [yσ] − [zσ] = dH − d

∑
EI for any (d − 1)-simplex σ,

hence f∆ has this class as well.

Definition 3.7. The support of a complex ∆ on A is the collection of indices appearing in the
simplices of ∆:

Supp(∆) :=
⋃
σ∈∆

Supp(σ) ⊆ A.

Clearly a complex ∆ on A may be viewed as a complex on Supp(∆) ⊆ A.

Lemma 3.8. If ∆ is a balanced complex on [n − 1], corresponding to f ∈ Cox(M0,n), then its

restriction to Supp(∆) is balanced; if g ∈ Cox(M0,Supp(∆)t{∗}) is the corresponding polynomial,

then f = π∗g, where π :M0,[n−1]t{∗} →M0,Supp(∆)t{∗} is the induced forgetful map.

Proof. The balancing statement is trivial, so we focus on the pull-back statement. By [Kap93b,

Proposition 2.7], this forgetful map corresponds to a linear projection Pn−3 99K P| Supp(∆)|−2. In
terms of our Ga-invariant coordinates on these projective spaces, this simply means that we send
an invariant polynomial in the yi

zi
for i ∈ |Supp(∆)| to the polynomial with the same monomials

and coefficients but with the zi redefined accordingly. Since the polynomials in the Cox ring are
obtained by clearing denominators of these Laurent polynomials, the result follows. �

Remark 3.9. Given balanced (d− 1)-complexes ∆ and ∆′, it is easy to see that by summing their
R-weightings one obtains a balanced (d − 1)-complex supported on a subset of ∆ ∪∆′. However,
the correspondence in Theorem 3.5 is not generally an additive homomorphism with respect to this
structure. Indeed, if there is a simplex σ ∈ ∆∩∆′ and the associated weights satisfy wσ +w′σ = 0,
then it may not be the case that clearing denominators of f∆, f∆′ commutes with taking their sum.
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Figure 1. Two balanced 1-complexes with the same class in Pic(M0,5).

3.1. Effective divisor classes. The following lemma says that the class in Pic(M0,n) of the poly-
nomial associated to a balanced complex is independent of the balancing weights. Thus, associated
to each balanceable complex ∆ is a well-defined divisor class that we denote by D∆ ∈ Pic(M0,n).
First some notation: given a multiset S and an element i ∈ Supp(S), we define the multiplicity of
i in S, denoted multi(S), to be the number of times i occurs in S.

Lemma 3.10. All balanced weightings on a (d − 1)-complex ∆ yield homogeneous elements in
Cox(M0,n) that are sections of the same line bundle isomorphism class. Specifically,

D∆ = dH −
∑
I

(
d−max

σ∈∆

{∑
i∈I

multi(σ)

})
EI ∈ Pic(M0,n).

Proof. This follows directly from the proof of Theorem 3.5 and Remark 3.6. Indeed, prior to
clearing denominators any Laurent polynomial f∆ has class dH −

∑
dEI , and the above formula

encodes the effect on this class of minimally clearing denominators. �

Definition 3.11. The divisor class D∆ ∈ Pic(M0,n) associated to any complex ∆ on [n− 1], not
just a balanceable complex, is given by the formula in Lemma 3.10.

Some caution is needed here, as it is not true that D∆ is effective if and only if ∆ is balanceable.
Moreover, we cannot associate to each effective divisor class a well-defined balanceable complex,
since as the following example illustrates, different balanceable complexes may yield the same divisor
class. In other words, by varying the weights on a balanced complex one obtains a collection of
linearly equivalent effective divisors that need not form a complete linear system.

Example 3.12. The 1-complex on {1, 2, 3, 4} given by a square ({1, 2}, {2, 3}, {3, 4}, {1, 4}) with
weights (1,−1, 1,−1) is clearly balanced, as is the complex (({1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}, {2, 4})
obtained by adding the diagonals and weighting by (1, 1, 1, 1,−2,−2) (see Figure 1). The corre-

sponding pair of effective divisors both have class 2H −
∑4

i=1Ei ∈ Pic(M0,5).

There are, however, conditions that guarantee there is unique complex of a given divisor class.

Proposition 3.13. Let ∆ be a non-singular (d− 1)-complex, let ∆′ be any complex, and suppose
moreover that d ≤ n− 4. Then D∆ = D∆′ if and only if ∆′ = ∆.

Proof. Clearly, we may assume that ∆′ is a (d− 1)-complex. Moreover, by Lemma 3.14 below we
can assume ∆′ is non-singular. Let σ ∈ (∆ \ ∆′) ∪ (∆′ \ ∆). Since σ is non-singular it can be
regarded as a set, not just a multiset, and the hypothesis d ≤ n − 4 implies that there exists a
variable xσ ∈ Cox(Xn). Then by the formula defining D∆ we see that the corresponding class Eσ
has coefficient zero in one of D∆, D∆′ and negative coefficient in the other. �
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Lemma 3.14. If ∆ is a non-singular (d− 1)-complex, and ∆′ is a singular (d− 1)-complex, then
D∆ cannot be written as a sum of D∆′ and any collection (even the empty one) of exceptional
classes EI .

Proof. By assumption, there is a simplex σ ∈ ∆′ with an index i of multiplicity at least two, whereas
i has multiplicity at most one in all simplices of ∆. Therefore, the coefficient of Ei is strictly greater
in D∆′ than in D∆. �

Proposition 3.15. Let ∆ be a non-singular (d − 1)-complex, with d ≤ n − 4, and suppose every
proper subcomplex ∆′ ( ∆ is not balanceable. Then D∆ is effective if and only if ∆ is balanceable.

Proof. If ∆ is balanceable then by definition D∆ is effective. Conversely, suppose ∆ is not balance-
able. By Theorem 3.5, any section of D∆ then corresponds to either (1) a homogeneous element
f ∈ Cox(M0,n) divisible by some xI , or (2) a balanced weighting on a complex distinct from ∆. The
second case is ruled out by Proposition 3.13, so consider the first case. By factoring out as many
xI as possible we obtain f = (

∏
xI)g where g ∈ Cox(M0,n) corresponds to a balanced complex

with underlying complex ∆′. Then we have

D∆ = [f ] = D∆′ +
∑

EI ,

so ∆′ 6= ∆ and by Lemma 3.14 we know that ∆′ is non-singular. We claim that ∆′ ( ∆. If σ ∈ ∆′

then, since σ is non-singular and d ≤ n − 4, there is a variable xσ ∈ Cox(Xn). We see from the
formula in Lemma 3.10 that the coefficient of Eσ in D∆′ is zero, hence it is also zero in D∆, so by
the same formula we must have σ ∈ ∆. �

Remark 3.16. Recall that the set of effective divisor classes for a smooth, projective variety X
naturally forms a monoid, denoted M(X). This monoid is sharp, meaning that the only unit is
zero, since a nontrivial line bundle and its dual cannot both admit a global section. If Pic(X) is
finitely generated and torsion-free, then M(X) is also integral and all non-empty subsets contain a
minimal element, so by [Ogu06, Remark 2.1.4] there is a unique minimal generating set, namely, the
irreducible elements of the monoid. Recall that an element of a sharp additive monoid is irreducible
if it is nonzero and it cannot be written as a sum of elements unless one of them is zero.

In the context of M0,n
∼= BlPn−3, an obvious condition for a class to be reducible is if one can

subtract off any exceptional divisors from it. For most purposes it therefore suffices to consider
effective classes for which no exceptional classes can be removed; the following result says these
classes are completely determined by our framework of balanced complexes.

Corollary 3.17. Let D ∈ Pic(M0,n) be a class such that D − EI is not effective for any I. Then
D is effective if and only if there is a balanceable complex ∆ with D∆ = D.

Proof. If there is a balanceable complex ∆ with D∆ = D, then obviously D is effective. Conversely,
suppose D is effective, and consider a section f ∈ |D|. If f is divisible by some xI , then D −EI is
effective, contradicting the hypothesis. Thus f satisfies the conditions of Theorem 3.5 and therefore
corresponds to a balanced complex ∆ with class D∆ = D. �

Remark 3.18. Since the balancing condition depends strongly on the base ring R (for instance,
see Proposition 3.4), this result illustrates an intricate characteristic-dependent behavior of the set
of effective divisor classes onM0,n that appears far from evident from a direct modular perspective.
We explore this in more detail below in the case of degree two divisors (cf., Theorem 4.4).

If ∆ and ∆′ are balanceable complexes and ∆′ ⊆ ∆, then D∆ = D∆′ +
∑
EI for some collection

(possibly empty) of exceptional classes, by Lemma 3.10. This motivates the following concept.

Definition 3.19. A balanceable complex ∆ is minimal if for any proper subset ∆′ ( ∆, the
complex ∆′ is not balanceable.
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Proposition 3.20. Suppose R is a field and ∆ is a minimal complex. Then the set of R-weightings
that balance ∆ (together with zero) forms a 1-dimensional vector space.

Proof. Write ∆ = {σ1, . . . , σm}. The fact that R has no zero-divisors implies that if {wi} is an
R-weighting that balances ∆, then {rwi} is also an R-weighting balancing ∆, for any r ∈ R \ {0}.
Suppose there is a balancing {w′i} that is not a constant multiple of the balancing {wi}. The
Laurent polynomials f(∆,{wi}) and f(∆,{w′i}) have the same terms, which are in bijection with ∆.

Choose a simplex σj ∈ ∆ and consider the collection of weights {w′jwi −wjw′i}mi=1. By assumption
these are not all zero, and the subset of nonzero elements balances the corresponding subset of ∆
(cf., Remark 3.9). Since this latter subset is contained in ∆ \ {σj}, we obtain a contradiction to
the hypothesis that ∆ is minimal. �

Proposition 3.21. If ∆ is a non-singular, minimal (d− 1)-complex, with d ≤ n− 4, then the set
of balancing weights on ∆ corresponds to the complete linear system |D∆|.

Proof. Let f ∈ |D∆|. There are two cases we must rule out: (1) f is divisible by some xI , and
(2) f is not divisible by any xI but it corresponds to a balanced complex supported on a complex
∆′ 6= ∆. The second of these cannot occur due to Proposition 3.13, so suppose the first occurs.
The argument in the proof of Proposition 3.15 shows that there is a balanceable complex ∆′ ( ∆;
but this contradicts the minimality hypothesis. �

Corollary 3.22. If ∆ is a non-singular, minimal (d−1)-complex over a field, with d ≤ n−4, then
h0(M0,n, D∆) = 1.

Proof. This follows immediately from Propositions 3.20 and 3.21. �

Minimality is helpful in ruling out one type of reducibility of elements in the monoid of effective
divisor classes, namely, the existence of a decomposition D = D′+

∑
EI where deg(D′) = deg(D).

Another, more subtle, form of reducibility is when D = D1 + D2 with deg(Di) < deg(D). The
following definition is aimed at studying this phenomenon.

Definition 3.23. For a d1-complex ∆1 and a d2-complex ∆2, their product is the (d1 + d2 + 1)-
complex

∆1 ·∆2 = {σ1 ∪ σ2 | σi ∈ ∆i}.

Remark 3.24. If ∆1, ∆2 are balanced complexes, corresponding to polynomials g1, g2 ∈ Cox(M0,n),

then it is not generally the case that g1g2 ∈ Cox(M0,n) corresponds to a balanced R-weighting on
the complex ∆1 ·∆2, since cancellation may occur when expanding out this product.

Theorem 3.25. Let ∆ be a non-singular minimal (d − 1)-complex, d ≤ n − 4, over a field, and
suppose there is no decomposition ∆ = ∆1 ·∆2 with ∆i minimal non-singular complexes satisfying
Supp(∆1) ∩ Supp(∆2) = ∅. Then D∆ is irreducible in M(M0,n) and every generating set for

Cox(M0,n) includes the unique (up to scalar) section of D∆.

Proof. The hypotheses of Corollary 3.22 are satisfied, so |D∆| is spanned by a single element, call
it f , which is not divisible by any exceptional divisor section xI . This latter condition implies that
there is no non-trivial expression of the form D∆ = D+

∑
EI with D effective. Therefore, the only

way D∆ could be reducible is if we have a decomposition D∆ = D1 +D2 with deg(Di) < D. Such
a decomposition would imply a factorization f = f1f2. Since f is not divisible by any xI , neither
are the fi, so they correspond to balanced complexes ∆1 and ∆2. We claim that the underlying
complexes ∆1 and ∆2 are supported on disjoint subsets of [n− 1]:

Supp(∆1) ∩ Supp(∆2) = ∅.
Indeed, suppose ` ∈ σ1 ∩ σ2 for some index ` ∈ [n − 1] and simplices σi ∈ ∆i. Let ki ≥ 1 be the
largest exponent of y` appearing in the Laurent polynomial f∆i

. It suffices, by the non-singularity
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hypothesis on ∆, to show that the expansion of f1f2 has a nonzero term divisible by yk1+k2
` ; but

this is clear, so the claim holds. It follows that there is no cancellation of terms when expanding the
product f1f2, so ∆1 ·∆2 = ∆ and each ∆i is non-singular. Moreover, for this same reason if either
∆i were not minimal, then ∆ would not be minimal, so we obtain a contradiction to the hypothesis
that ∆ is minimal and not a product of disjointly supported minimal non-singular complexes.

Finally, we note that in general the monoid M(X) is generated by the classes of a generating set
of the ring Cox(X); since this monoid is minimally generated by its irreducible elements, we see
that any generating set for the Cox ring must include a section of each irreducible divisor class. �

4. Catalogue of divisor classes

In this section we continue to work over an arbitrary ring R, unless otherwise stated, and we
introduce various important families of balanceable complexes, with a view towards understanding
minimal complexes and irreducible divisor classes (cf., Theorem 3.25). A basic but important
observation is that in a balanceable complex, every face of every simplex must belong to more than
one simplex. This restriction, as we shall see below, means that minimal complexes tend to be
triangulations of closed manifolds, or closely related objects. We start with a simple example.

Example 4.1. A minimal 0-complex is a pair of vertices; the associated divisor class is a degree
one boundary divisor, i.e., the strict transform of a hyperplane in Pn−3. This corresponds to an
invariant yi

zi
− yj

zj
, which upon clearing denominators yields a binomial with class H −

∑
I 63i,j EI .

Recall that the orthoplex, or cross-polytope, is the convex hull in Rd of the 2d vectors ±ei. For
example, the 1-orthoplex is an interval, the 2-orthoplex is a square, and the 3-orthoplex is an
octahedron. All of the facets of the orthoplexes are simplices. We claim that the d-fold product
of minimal 0-complexes with disjoint support is a minimal (d − 1)-complex comprising the 2d

facets of the d-orthoplex; the associated divisor class is a sum of d degree one boundary divisor
classes. Indeed, the disjoint support hypothesis implies that clearing denominators commutes with
taking the product of the d binomials of the form yi

zi
− yj

zj
, so the simplices of the product complex

correspond simply to the terms of this expansion. This complex is minimal, since removing any
simplices would yield a face contained in a single simplex.

4.1. Degree two divisors. Here we investigate in more detail the case of 1-complexes and their
corresponding quadric divisor classes. For simplicity we work over an arbitrary field k. Recall that
1-complexes are simply graphs without multiedges. This case is special because one can restrict
attention entirely to non-singular complexes, or in other words, loop-free graphs:

Proposition 4.2. If a balanceable 1-complex ∆ is singular, then its class D∆ is a sum of boundary
divisor classes; in particular, it is reducible.

Proof. A singular 1-complex has a simplex of the form σ = {i, i}, so by Lemma 3.10 the class D∆

involves only EI with i /∈ I. Thus we can identify D∆ with an effective divisor class on the toric
variety Xn−1 obtained by blowing up only coordinate points in Pn−3. The effective cone of this toric
variety is generated by exceptional divisors and strict transforms of hyperplanes, so D∆ is a sum of
exceptional divisors and two strict transforms of hyperplanes. Returning to M0,n, this shows that
D∆ is a sum of degree zero boundary divisors and two degree one boundary divisors. �

Remark 4.3. The above proof shows that for a balanceable (d − 1)-complex ∆ for any d ≥ 2,
the class D∆ is a sum of exceptional boundary divisors and d degree one boundary divisors if ∆
contains a simplex σ with | Supp(σ)| = 1. Of course, for d ≥ 3 there are many singular complexes
that do not contain such maximally singular simplices, and for these complexes D∆ may in fact be
irreducible (cf., §5.3).

Already with non-singular 1-complexes we find some intriguing behavior.



A SIMPLICIAL APPROACH TO EFFECTIVE DIVISORS IN M0,n 13

(1) (2)

1

2

3

2m

. . .

1

2

. . .2m

2m+ 1

2m+ 2

. . .

2(m+ `) 2(m+ `) + 1

(3a)

1

2

. . .2m

2m+ 1

2m+ 3

. . .

2(m+ `)

2m+ 2

(3b)

1

2

. . .2m− 2

2m− 1

2m+ `+ 1

. . .

2m+ `+ 2r

2m+ `

2m. . .

Figure 2. The minimal 1-complexes in Proposition 4.6.

Theorem 4.4. The set of effective classes in Pic(M0,n) depends on char k, for all n ≥ 7.

Proof. Consider a 1-complex ∆ on {1, . . . , 6} given by the edges of a disjoint union of two triangles.
This is easily seen to be balanceable if and only if char k = 2 (or more generally, for an arbitrary
base ring R, if and only if 2 ∈ R is a zero-divisor). Since any subcomplex is not balanceable, the
result follows from Proposition 3.15. �

Remark 4.5. The preceding result does not imply that the effective cone Eff(M0,n) depends on
char k. Indeed, although D∆ is effective if and only if char k = 2 when ∆ is a disjoint union of two
triangles, we shall show in §5.4.2 that 2D∆ is effective over any field.

Graph-theoretic cycles, such as the triangles used in the proof of Theorem 4.4, play an important
role. We call a cycle even or odd, respectively, if it has an even or odd number of edges. A loop
σ = {i, i} is a cycle with one edge, so it is odd.

Proposition 4.6. The minimal 1-complexes over k are the following (see Figure 2):

(1) an even cycle;
(2) a union of two odd cycles, meeting in a single vertex, and

(3a) a disjoint union of two odd cycles, if char k = 2.
(3b) a union of two odd cycles, connected by a chain of one or more edges, if char k 6= 2.

Proof. If a graph contains no cycles, then it contains a valence-one vertex and hence cannot be
balanced, so every balanceable graph contains a cycle. Note that an even cycle is balanceable
whereas an odd cycle is not; thus, if a minimal graph contains more than one cycle, they must all
be odd. If there are two odd cycles that share one or more edges, then by deleting these we obtain
an even cycle. Thus, in a minimal graph with more than one cycle, no two cycles can share an edge.
Note that if char k = 2 then a disjoint union of two odd cycles is balanceable, but if a balanced
graph is disconnected when char k 6= 2, then each of the connected components is balanced. In this
case, the two cycles must be connected by a chain of edges. �

Theorem 4.7. A degree two divisor class is irreducible in M(M0,n) if and only if it is of the form
D∆ where ∆ is one of the loop-free graphs described in Proposition 4.6, except for the square.

Proof. Suppose ∆ is one of the graphs mentioned in the hypothesis. Note that this forces n ≥ 6.
Since ∆ is non-singular and minimal, and 2 ≤ n − 4, to show that D∆ is irreducible it suffices
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Figure 3. The balanceable graph in Example 4.8.

by Theorem 3.25 to show that ∆ is not a product of disjointly supported non-singular minimal
0-complexes. But such a product is always a square (cf., Example 4.1), so this indeed holds.

Conversely, let D be an irreducible degree two divisor class. Every class of the form D−EI is not
effective, by irreducibility, so Corollary 3.17 implies that D = D∆ for some balanceable 1-complex
∆. Proposition 4.2 implies that ∆ is non-singular, and it cannot be a square since the divisor class
corresponding to a square is reducible (cf., Example 4.1), so it only remains to show that ∆ is
minimal. If there were a balanceable subcomplex ∆′ ( ∆, then it must be non-singular since ∆ is,
so again using that 2 ≤ n − 4 we see from the formula in Lemma 3.10 that there is a non-trivial
expression D∆ = D∆′ +

∑
EI , thus contradicting the irreducibility hypothesis. �

By Corollary 3.22, the divisor class associated to each graph in Theorem 4.7 has a unique section,
up to scalar. Since these classes are irreducible, any set of generators for Cox(M0,n) must include

these sections. However, not all of these classes are needed to generate the effective cone Eff(M0,n);
indeed, some of these classes span extremal rays (as we shall see in §5.4.1), whereas others span
non-extremal rays, as the following example illustrates.

Example 4.8. Let ∆ be the 1-complex in Proposition 4.6 of type (3b) shown in Figure 3. We
claim 2DG is an effective sum of multiple distinct boundary classes. Label the vertices as in Figure
3. By clearing denominators of

(
y1

z1
− y4

z4
)(
y2

z2
− y4

z4
)(
y3

z3
− y5

z5
)(
y3

z3
− y6

z6
),

we obtain a class that is the sum of four degree one boundary divisors. A straightforward calculation
shows 2DG is this class plus exceptional boundary divisors.

This implies the following:

Corollary 4.9. If n ≥ 7 and char(k) 6= 2, then there exist elements of Cox(M0,n) outside the

subring generated by sections of the extremal rays of Eff(M0,n).

4.2. Degree three divisors. We now return to a general base ring R and begin to investigate
balanceable 2-complexes. A complete classification of minimal complexes and irreducible divisor
classes, as we provided for 1-complexes, seems combinatorially out of reach. Indeed, as we illustrate
in this section through a collection of examples, there is a rich and elegant geometry, often quite
classical yet intricate, underlying minimality of 2-complexes. We saw in §4.1 that minimal 1-
complexes can be viewed as triangulations of a circle or pair of circles; here the key construction
appears to be triangulations of the sphere (or other closed surfaces) and ways to attach these.

4.2.1. Bipyramids. We saw in Theorem 3.25 that under suitable hypotheses, the divisor class as-
sociated to a non-singular minimal complex is irreducible except when that complex is a product
of disjointly supported non-singular minimal complexes. Thus, it is important to identify such
products. For a 2-complex, the only decomposition into a product is given by a 1-complex and
a 0-complex. But minimal 0-complexes are simply pairs of vertices, and we classified minimal 1-
complexes in Proposition 4.6. The product of a 1-complex ∆ with a disjointly supported minimal
0-complex is a discrete analogoue of the suspension construction in topology. For instance, if ∆ is
an even cycle, say a (2m)-gon, we obtain the faces of a (2m)-gonal bipyramid. If ∆ is the disjoint
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Figure 4. A cycle of tetrehedra.

Figure 5. Triangulated surface of an octahedron (image source: Wikipedia.org).

union of an m1-gon and an m2-gon, then we get the faces of mi-gonal bipyramids attached at their
north and south poles.

4.2.2. Cycle of tetrahedra. Consider a cycle of m tetrahedra attached as follows (see Figure 4):

{1, 2, 3, 4}, {3, 4, 5, 6}, . . . , {2m− 1, 2m, 1, 2}.

We claim that the collection of all faces of these tetrahedra forms a balanceable, and in fact
minimal, 2-complex. Indeed, if for each tetrahedron {a, b, c, d} we weight the faces wabc = wabd = 1
and wacd = wbcd = −1, then the balancing conditions are easily seen to hold; minimality follows
from the observation that removing any triangles results in an edge contained in only one triangle.

4.2.3. Triangulated octahedron. We saw above that the faces of an octahedron form a minimal
complex, but the associated divisor class is uninteresting since the octahedron is the suspension
of a square, so this complex decomposes into a product of minimal 0-complexes. However, we
can modify this 2-complex to produce one that is minimal yet no longer decomposes into such
a product. For instance, the triangulation of the faces of the octahedron pictured in Figure 5 is
readily seen to be balanced with weights in {±1}. Minimality is clear since, as usual, removing
triangles yields edges contained in a single triangle. Since this non-singular complex has 18 vertices,
we therefore obtain by Theorem 3.25 an irreducible divisor class, hence Cox ring generator, over
any field, for M0,n with n ≥ 19. Indeed, since this 2-complex is not the suspension of a graph it
does not decompose into a product of disjointly supported non-singular minimal complexes.

4.2.4. Triangulated cube. By triangulating the six faces of a cube into four triangles each, as de-
picted in Figure 6, we obtain a minimal 2-complex that can be balanced with weights in {±1} and
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Figure 6. Triangulated surface of a cube (image source: Wikipedia.org).

Figure 7. Truncated octahedron (image source: Wikipedia.org).

which is not the product of minimal complexes. The analysis is quite similar to the triangulated
octahedron described above. Here we obtain an irreducible divisor class on M0,n for all n ≥ 15.

4.2.5. Triangulated truncated octahedron. The truncated octahedron has 8 hexagonal faces and 6
square faces (see Figure 7). By subdividing each square face into 4 triangles as before, and each
hexagonal face into 6 triangles meeting at a central vertex, we again obtain a minimal complex
with irreducible divisor class, now defined on M0,n for n ≥ 39.

4.2.6. Triangulation of the torus. The sphere does not seem to be special with regard to triangu-
lations yielding minimal complexes. For instance, we can triangulate the torus as shown in Figure
8 to obtain an irreducible divisor class on M0,n whenever n ≥ 10.

4.2.7. And many more. The examples here of non-singular minimal 2-complexes comprise only a
tiny fraction of what exists. It appears that most triangulations of a closed surface such that
each vertex belongs to an even number of triangles yield minimal complexes balanced by weights in
{±1}. Given such a triangulation, it is usually possible to refine the triangulation to obtain another
minimal complex supported on a larger number of vertices. In this way, as n increases the number
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Figure 8. Triangulated torus.

of minimal 2-complexes yielding irreducible divisor classes on M0,n seems to grow quite quickly.
A classification of surface triangulations yielding minimal complexes, or an estimate of the growth
rate of such objects, would be interesting. Moreover, the example of a cycle of tetrahedra suggests
that minimal complexes are sometimes obtained by attaching various closed surface triangulations
in an appropriate way. Additionally, all the examples described in this section are non-singular and
minimal over any ring R, with weights in {±1}; surely there are interesting characteristic dependent
complexes as we saw in the case of graphs (cf., Proposition 4.6), and interesting singular complexes
too (in fact, many hypertree divisors correspond to singular complexes, cf., §5.3).

5. Relation to hypertree divisors

In this section we first recall the definition of a hypertree divisor from [CT13a] and then prove
that the only ones with degree two for some choice of ψ-class are those coming from n = 6 and
n = 7. We proceed to identify balanced complexes corresponding to a few hypertree divisors and
then present our counterexamples to the hypertree conjecture.

5.1. Background to the hypertree construction. The divisors constructed by Castravet and
Tevelev are parameterized by a combinatorial object they term a hypertree.

Definition 5.1. An irreducible hypertree on a set N is a collection of subsets Γ = {Γ1 . . . ,Γd} of
N satisfying the following properties:

(1) Each subset Γi contains at least 3 elements.
(2) Any j ∈ N is contained in at least two subsets Γi.
(3) (Convexity) For any S ⊂ {1, . . . , d} with 1 < |S| < d,

|
⋃
i∈S

Γi| − 2 >
∑
i∈S

(|Γi| − 2).

(4) (Normality)

|N | − 2 =

d∑
i=1

(|Γi| − 2).
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For each hypertree they consider the product of forgetful maps

M0,n+1 →
d∏
i=1

M0,Γi∪{n+1}.

The hypertree axioms precisely guarantee that this map is birational. For example, (1) implies
that none of the forgetful maps are trivial, and (4) implies that the dimensions of the domain and
codomain are equal. It turns out this map always contracts a single, irreducible, non-boundary
divisor, which Castravet and Tevelev call a hypertree divisor. By construction, each of these divisors
is the pull-back of an irreducible divisor from M0,n, and each generates an extremal ray of the
effective cone.

Remark 5.2. There is a determinantal formula for hypertree divisors with all Γi of size three in
terms of homogeneous coordinates on (P1)n in [CT13a, Proposition 8.1]. Their formula, and proof
of its validity, extend immediately to the case that at most one Γi has cardinality four1, which
covers all hypertrees for n ≤ 9 according to [CT13a, Figure 1]. Moreover, the translation from
this coordinate system to ours on Pn−3 is straightforward. In this way, one can write explicitly the
element of Cox(M0,n), hence balanced complex, corresponding to these hypertrees.

5.2. Degree of hypertree divisors. Here we show that, up to permutation and pull-back, there
are only two hypertree divisors of degree two in any Kapranov presentationM0,n

∼= BlPn−3. These
are the unique hypertree divisors in n = 6 and n = 7. First, some preliminary notation and results.

Definition 5.3. The degree of D ∈ Pic(M0,n) relative to ψi is the coefficient of H under the

isomorphism Pic(M0,n) ∼= ZH
⊕

I ZEI induced by the corresponding isomorphismM0,n
∼= BlPn−3.

We denote this by deg(D), or degi(D) if the dependence on ψi is to be emphasized. The minimal
degree is degmin(D) := min1≤i≤n{degi(D)}.

Remark 5.4. This can be phrased without mention of Kapranov’s blow-up construction. Fix n−1
general lines in P2, indexed by {1, . . . , î, . . . , n}, and a point p ∈ P2 not lying on any of them. The
pencil of lines through p yields a curve Ci ⊂ M0,n by viewing p as the ith marked point and the

intersection with the lines as the remaining marked points. Then degi(D) = D · Ci.

In terms of our coordinatization of Cox(M0,n), which depends on a choice of ψ-class, the degree
of the class of a multi-homogeneous polynomial is the total degree in the y-variables.

Example 5.5. If D is effective then deg(D) ≥ 0. The degree of a boundary divisor is 1 or 0,
depending on the choice of ψ-class, so the minimal degree of any boundary divisor is 0. The
minimal degree of any Keel-Vermeire divisor is 2.

Proposition 5.6. Every effective divisor class of minimal degree 0 or 1 is an effective combination
of boundary divisor classes.

Proof. Suppose degmin(D) ≤ 1, so that for some Kapranov isomorphism we haveD = aH−
∑

I bIEI
with a = 0 or 1. Let LI be the strict transform of a line in Pn−3 passing through a general point
of the linear span of the points in I. Since LI covers M0,n, we see that LI ·D′ ≥ 0 for all effective
divisors D′. Thus, if a = 0, we must have bI ≤ 0 for all I, and hence D is an effective sum of the
boundary divisors EI . If a = 1 then D is the sum of an irreducible effective divisor of degree 1
and an effective divisor of degree 0. Every irreducible effective divisor of degree 1, however, is the
strict transform of a hyperplane in Pn−3. Since such a hyperplane passes through at most n − 3
general points, and any hyperplane passing through a given set of points also passes through the
linear subspaces spanned by these points, we see that D is an effective combination of the boundary
divisor H −

∑
i,j /∈I EI , for some i and j, and exceptional boundary divisors. �

1In fact, Opie has provided a determinantal expression for all hypertrees in [Opi13, Theorem 3.1].
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Lemma 5.7. Let DΓ be the pull-back to M0,n of an irreducible hypertree divisor in M0,I . Then

degi(DΓ) =

{
d− vi if i ∈ I
d− 1 if i /∈ I

where d is the number of sets in Γ and vi is the valence of vertex i. In particular, degminDΓ =
d− vmax, where vmax is the maximum valence of the vertices in Γ.

Proof. If i /∈ I, the result follows immediately from [CT13a, Theorem 4.2]. On the other hand,
if i ∈ I, then, for the choice of Kapranov isomorphism given in [CT13a, Theorem 4.2], we have
degi(H) = n− 2, degi(Ej) = 1 if j 6= i, and degi(EJ) = 0 for all other sets J . It follows then that

degi(DΓ) = (d− 1)(n− 2)−
∑
j 6=i

(d− vj) = 2− d− n+
∑
j 6=i

vj

= 2− d− n− vi +
d∑
j=1

|Γj | = d− vi.

The last statement follows from the fact that every vertex has valence ≥ 2. �

Proposition 5.8. The only irreducible hypertree divisors of minimal degree 2 are the unique hy-
pertree divisor on 6 vertices, the unique hypertree divisor on 7 vertices, and their pull-backs.

Proof. Note that, by Proposition 5.6, every irreducible hypertree divisor has minimal degree at
least 2. By Lemma 5.7, it therefore suffices to consider a hypertree with a vertex v of valence d−2.
Suppose without loss of generality that Γ1 and Γ2 are the only sets in the hypertree that do not
contain v. By convexity, any pair of sets cannot intersect in more than one vertex, so for each
vertex w 6= v there is at most one set containing both v and w. Hence∑

Γi3v
(|Γi| − 2) = |

⋃
Γi3v

Γi|+ (d− 3)− 2(d− 2) = |
⋃

Γi3v
Γi| − (d− 1).

By normality, this implies that

|Γ1|+ |Γ2| = n+ d+ 1− |
⋃

Γi3v
Γi|.

Since the valence of each vertex is at least 2, every w 6= v must be contained in either Γ1 or Γ2,
and since |Γ1 ∩ Γ2| ≤ 1, it follows that |Γ1|+ |Γ2| is either n− 1 or n. Thus we have

|
⋃

Γi3v
Γi| ≥

{
n if |Γ1|+ |Γ2| = n− 1

n− 1 if |Γ1|+ |Γ2| = n

so n = d + 2 or d + 1, but the latter is impossible by normality. This forces |Γi| = 3 for all i, so
|Γ1|+ |Γ2| = 6. But again, this sum is either n− 1 or n, so n is either 6 or 7. �

5.3. Simplicial complex presentation of hypertree divisors. Using the method described in
Remark 5.2, it is straightforward to compute that the minimal 1-complex comprising the edges of a
triangle meeting a triangle at a single vertex is the n = 6 hypertree divisor (i.e., the Keel-Vermeire
divisor), and the minimal 1-complex comprising the edges of a hexagon is the n = 7 hypertree
divisor. It follows, then, from Proposition 5.8 that all the other minimal 1-complexes described in
Theorem 4.7 yield irreducible divisor classes that are not equal to that of a hypertree divisor.

Note that, by Lemma 5.7, in order to get a degree 2 divisor class from the n = 7 hypertree we must
pick the ψ-class corresponding to the central vertex in its depiction in [CT13a, Figure 1]. Another
straightforward computation using the method of Remark 5.2 shows that if we use any other ψ-class
for this hypertree we get the degree 3 divisor corresponding to a cycle of 3 tetrahedra as described
in §4.2.2. Many of the n = 8 and n = 9 hypertrees correspond to singular, though still quite
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interesting, simplicial complexes. A systematic translation between the hypertree language and the
balanced complex language seems a worthwhile future pursuit. Since the hypertree combinatorics
are rooted in the geometry of products of forgetful maps, reinterpreting that geometry in this
setting may be a natural place to start.

5.4. Counterexamples to the hypertree conjecture. Here we provide two counterexamples
to the hypertree conjecture, one in M0,7 and one in M0,9. Note that, by pulling these divisors

back via forgetful maps, one obtains counterexamples in M0,n for all n ≥ 7. In addition to the
examples described below, we have checked by computer that, if ∆ is the edges of a triangle meeting
a pentagon at one vertex, then D∆ ∈ Eff(M0,8) lies outside the cone generated by hypertree and
boundary divisors. We suspect that the divisor D∆, where ∆ is any even cycle with at least six
edges, should generate an extremal ray of Eff(M0,n), but at present we have no proof.

Our approach is via covering curves. Recall that a curve C ⊂ X is said to cover a subvariety
Y ⊂ X if C ⊂ Y and there is an irreducible curve numerically equivalent to C passing through a
general point of Y . It is well-known that a divisor D ⊂ X spans an extremal ray of the effective
cone if D is covered by a curve C such that D · C < 0 (see, e.g., [Rul01, Lemma 1.4.2]).

5.4.1. The Case n = 9. Consider the divisor Doct := D∆ where ∆ is the set of edges of an octagon.
We saw in Theorem 3.25 that h0(M0,n, Doct) = 1, spanned by an irreducible section. Our goal is
to construct a curve F9 that covers this divisor and satisfies F9 ·Doct < 0.

Fix a conic C9 ⊂ P2, points p1, . . . , p7 ∈ C9, and a point p8 ∈ P2 rC9. We define a configuration
of four lines and four conics in P2 as follows: for 1 ≤ i ≤ 7, i odd, let Li be the line through p2 and
pi. For 2 ≤ i ≤ 8, i even, let Ci be the conic through p4, p6, p8, pi+3, and pi−3, where here i + 3
and i− 3 are taken mod 8.

The pencil of lines through p6 determines a curve in M0,9, where each line is labelled by its
intersection with the lines and conics. More specifically, if we let S be the blow-up of P2 at the
intersection points of the lines and conics, then the strict transforms L̃i, C̃i of the lines Li and the
conics Ci give disjoint sections of the map πp6 : S → P1. We write F9 ⊂M0,9 for the corresponding
curve in the moduli space. By construction, we have:

F9 ·H = −C̃9
2

= −(22 − 7) = 3

F9 · EI =


2 if I = {1, 3, 5, 7}
1 if I = {2, 4, 6, 8} or I = {i, i+ 3, i− 3} for i odd

0 otherwise.

It follows that

F9 ·Doct = 2 · 3− 5− 2 = −1.

Proposition 5.9. The curve F9 covers Doct.

Proof. We write Q for the image of Doct in P6, and ΛI for the image of the exceptional divisor EI .
The image of F9 in P6 is a twisted cubic that intersects each of the planes Λi,i+3,i−3 for i odd and
the 3-space Λ2468, and intersects Λ1357 twice. The linear span of this twisted cubic is a 3-space
Λ that intersects each of the planes Λi,i+3,i−3 and the 3-space Λ2468, and whose intersection with
the 3-space Λ1357 is at least 1-dimensional. Note further that, by construction, the cross-ratio of
the 4 sections C̃i for i odd, i < 9, is constant. It follows that the line through the two points of
intersection of the twisted cubic with Λ1357 passes through the point q = Λ1357 ∩ Λ2468, and thus
the intersection Λ ∩ Λ2468 is positive-dimensional as well. We will show that such a curve passes
through the general point of Q by first constructing such a 3-space.

Let p ∈ Q be a general point. For any pair of lines L− ⊂ Λ1357, L+ ⊂ Λ2468, both containing
q, the linear span of the point p and the lines L−, L+ is 3-dimensional. In this way, we obtain a
4-dimensional family of 3-spaces in P6. The set of 3-spaces intersecting a given plane is an ample
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divisor in G(3, 6), so there exists a pair of lines L−, L+ as above such that the 3-space Λ spanned by
the two lines and the point p intersects the 4 planes of the form Λi,i+3,i−3 for i odd. The intersection
Q ∩ Λ is a quadric surface that we denote by S.

By our earlier construction of F9, there exist points p for which S contains a twisted cubic, so
for a general p, S is irreducible. Moreover, since Q is smooth and p is general, the line through p
and q is not contained in Q, which implies that S is smooth. We now let Fp be the unique curve
of bidegree (1, 2) on S ∼= P1 × P1 passing through p and the 4 points Λ ∩ Λi,i+3,i−3. Again, by
our earlier construction of F9, there exists a point p such that Fp is irreducible, and thus Fp is
irreducible for a general point p. �

Corollary 5.10. The divisor Doct spans an extremal ray of Eff(M0,9). It lies outside the cone
generated by boundary and hypertree divisors.2

Proof. Since Doct is irreducible, F9 covers Doct, and F9 · Doct < 0, we know Doct generates an
extremal ray of Eff(M0,9). By Propositions 5.8 and 3.13, Doct is not equal to a hypertree or
boundary divisor, and since it is extremal it therefore cannot be in the cone that they span. �

5.4.2. The Case of n = 7. Now consider the divisor Dtri := D∆ where ∆ is the edges of a disjoint
union of two triangles. We saw in Proposition 4.6 that Dtri is effective if and only if char(k) = 2.
On the other hand, a straightforward linear algebra computation shows that the class 2Dtri is
effective in every characteristic. Indeed, if ∆′ is the 1-complex depicted in Figure 3, then by taking
a linear combination of the two sections we know to exist in H0(M0,7, 2D∆′) by Example 4.8, one

obtains a section divisible by a product of xI variables, and the quotient is in H0(M0,7, 2Dtri). As
in the previous section, our goal is to construct a curve F7 such that F7 ·Dtri < 0.

Fix 6 general lines L1, . . . , L6 ⊂ P2, and consider the pencil of cubics spanned by L1 + L2 + L3

and L4 + L5 + L6. Since the lines are general, no 3 of the basepoints of this pencil lie on a line
other than one of the Li’s, and thus the 6 other singular elements of the pencil are irreducible. Let
C be an irreducible singular cubic in this pencil, and let p ∈ C be the singular point.

The pencil of lines through p gives a curve inM0,7 as follows: each line through p is labelled by

the intersection of the line with Li, with the 7th point labelled by the unique point of intersection
of the line with C other than p. More precisely, if we let S be the blow-up of P2 at p and the
intersection points of the 6 lines, then the strict transforms L̃i, C̃ of the lines Li and the cubic C
give disjoint sections of the map πp : S → P1. We write F7 ⊂ M0,7 for the curve obtained in this
way. By construction, we have:

F7 ·H = −C̃2 = −(32 − 22 − 9) = 4

F7 · EI =

{
1 if I = {i, j} where i ≤ 3 and j ≥ 4

0 otherwise.

It follows that

F7 ·Dtri = 2 · 4− 9 = −1.

Corollary 5.11. The class Dtri lies outside the cone generated by boundary and hypertree divisors.

Proof. The numerical calculation above shows that F7 has nonnegative intersection with all of the
boundary divisors. Similarly, the intersection of F7 with any hypertree divisor (of which, up to
symmetry, there are only two) is positive. Since F7 · Dtri < 0, Dtri cannot be an effective linear
combination of boundary and hypertree divisors. �

Remark 5.12. We strongly suspect that the curve F7 covers the divisor 2Dtri, and thus Dtri spans
an extremal ray of Eff(M0,7), but at present we have no proof.

2And outside the cone generated by these and Opie’s extremal rays, by degree considerations as well.
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6. Topics for further study

• Extend the classification of minimal balanceable complexes from dimension one (Proposition
4.6) to higher dimensions (if necessary, restrict to non-singular d-complexes with d ≤ n−5).
• When is the class D∆ irreducible if the d-complex ∆ is allowed to be singular and/or satisfy
d > n− 5? (cf., Theorem 3.25.)
• Produce examples of divisor classes whose effectivity requires char(k) = p for some p 6= 2.

(Cf., the example used in Theorem 4.4.)
• Find a direct bridge between the combinatorics of hypertrees and of a corresponding class

of balanceable complexes. Some hypertree divisors arise from even triangulations of the
sphere [CT13a, §7]; does this relate to our spherical triangulations? (Cf., §4.2.)
• Study the relation between a divisor class D and its multiples mD in terms of the associated

balanceable complexes.
• Develop a method for determining when an irreducible divisor class spans an extremal ray

of the effective cone, and for proving extremality in such cases. (Cf., §5.4.2.)
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