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Abstract. We study the birational geometry of M3,1 and M4,1.
In particular, we pose a pointed analogue of the Slope Conjecture
and prove it in these low-genus cases. Using variation of GIT,
we construct birational contractions of these spaces in which cer-
tain divisors of interest – the pointed Brill-Noether divisors – are
contracted. As a consequence, we see that these pointed Brill-
Noether divisors generate extremal rays of the effective cones for
these spaces.

1. Introduction

The moduli spaces of curves are some of the most studied objects in
algebraic geometry. In recent years, a great deal of progress has been
made on understanding the birational geometry of these spaces. Ex-
amples include the work of Hassett and Hyeon on the minimal model
program for M g [HH09a] [HH09b] and the discovery by Farkas of pre-
viously unknown effective divisors on M g [Far09]. Nevertheless, many
fundamental questions remain open.

Many of these questions can be stated in terms of the cone of ef-

fective divisors NE
1
(M g). Among the first to study this cone were

Eisenbud, Harris and Mumford in a series of papers proving that M g

is of general type for g ≥ 24 [HM82] [EH87]. A key element of these
proofs is the computation of the class of certain divisors on M g. The
original paper of Harris and Mumford focused on the k-gonal divisor
in M2k−1, a specific case of the more general class of Brill-Noether di-
visors. In their argument, they use this calculation to show that the
canonical class can be written as an effective sum of a Brill-Noether
divisor, boundary divisors, and an ample divisor, and hence lies in

the interior of NE
1
(M g). The search for effective divisors with this

property eventually led to the Harris-Morrison Slope Conjecture.
In their work, Harris and Eisenbud discovered that all of the Brill-

Noether divisors lie on a single ray in NE
1
(M g). One consequence of

the Slope Conjecture would be that this ray is extremal. The Slope
Conjecture has recently been proven false in [FP05] and subsequently
in [Far09], but the statement is known to hold for certain small values
of g. In several of these cases, the statement can be proved by use of the
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Contraction Theorem, which states that the set of exceptional divisors

of a birational contraction X 99K Y span a simplicial face of NE
1
(X)

(see [Rul01]). In other words, the Slope Conjecture has been shown
to hold for small values of g by constructing explicit birational models
for the moduli space in which the Brill-Noether divisor is contracted.
Moreover, these models arise naturally as geometric invariant theory
quotients.

The purpose of this paper is to carry out a pointed analogue of the
discussion above in some low genus cases. In [Log03], Logan introduced
the notion of pointed Brill-Noether divisors.

Definition 1. Let Z = (a0, . . . , ar) be an increasing sequence of non-
negative integers with α =

∑r
i=0(ai − i). Let BN r

d,Z be the closure of
the locus of pointed curves (p, C) ∈ Mg,1 possessing a grd on C with
vanishing sequence Z at p. When g + 1 = (r + 1)(g − d + r) + α, this
is a divisor in M g,1, called a pointed Brill-Noether divisor.

Logan’s original motivation was to prove a pointed version of the
Harris-Mumford general type result. In this setting, it is natural to
consider an analogue of the Slope Conjecture:

Question 1. Is there an extremal ray of NE
1
(M g,1) generated by a

pointed Brill-Noether divisor?

We consider this question in certain low-genus cases. When g = 2,
this question was answered in the affirmative by Rulla [Rul01]. He
shows that the Weierstrass divisor BN1

2,(0,2) generates an extremal ray

of NE
1
(M2,1) by explicitly constructing a birational contraction of

M2,1. Our main result is an extension of this to higher genera:

Theorem 1.1. There is a birational contraction of M3,1 contracting
the Weierstrass divisor BN1

3,(0,3). Similarly, there is a birational con-

traction of M4,1 contracting the pointed Brill-Noether divisor BN1
3,(0,2).

As a consequence, we identify an extremal ray of the effective cone.

Corollary 1.2. For g = 3, 4, there is an extremal ray of NE
1
(M g,1)

generated by a pointed Brill-Noether divisor.

The proof uses variation of GIT. In particular, we consider the fol-
lowing GIT problem: let Y be a surface and fix a linear equivalence
class |D| of curves on Y . Now, let

X = {(p, C) ∈ Y × |D| |p ∈ C}
be the universal family over this space of curves. In the case where
(Y, |D|) is (P 2, |O (4)|) or (P 1×P 1, |O (3, 3)|), the quotient ofX//Aut(Y )
is a birational model for M3,1 or M4,1, respectively. By varying the
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choice of linearization, we obtain a birational model in which the spec-
ified divisor is contracted.

The outline of the paper is as follows. In section 2 we provide some
background on variation of GIT. In section 3, we develop a tool for
studying GIT quotients of families of curves on surfaces. In particular,
we construct a large class of divisors on these spaces that are invariant
under the automorphism group of the surface, called Hessians. In sec-
tions 4 and 5 we then examine separately curves on P 2 and on P 1×P 1,
yielding our result in the cases of g = 3 and 4.

We plan on discussing similar results for genus 5 and 6 in a later
paper.

Acknowledgements This work was prepared as part of my doctoral
dissertation under the direction of Sean Keel. I would like to thank him
for his abundance of help and suggestions. I would also like to thank
Brendan Hassett for his ideas.

2. Variation of GIT

The birational contractions that we construct arise naturally as GIT
quotients. This section contains a brief summary of results of Dolgachev-
Hu [DH98] and Thaddeus [Tha96] on variation of GIT.

Given a group G acting on a variety X, the GIT quotient X//G is
not unique – it depends on the choice of a G-ample line bundle. In
particular, if L ∈ PicG(X), we have

X//LG = Proj
⊕
n≥0

H0(X,L ⊗n)G.

Following Dolgachev and Hu, we will call the set of all G-ample line
bundles the G-ample cone. A study of how the quotient varies with
the choice of the G-ample line bundle was carried out independently by
Dolgachev-Hu [DH98] and Thaddeus [Tha96]. The following theorem
is a summary of some of the results of those papers:

Theorem 2.1. [DH98] [Tha96] The G-ample cone is divided into a
finite number of convex cones, called chambers. Two line bundles L
and L ′ lie in the same chamber if Xs(L ) = Xss(L ) = Xss(L ′) =
Xs(L ′). The chambers are bounded by a finite number of walls. A
line bundle L lies on a wall if Xss(L ) 6= Xs(L ). If L lies on a
wall and L ′ lies is an adjacent chamber, then there is a morphism
X//L ′G→ X//LG. This map is an isomorphism over the stable locus.

Both Thaddeus and Dolgachev-Hu examine the maps between quo-
tients at a wall in the G-ample cone. Specifically, let L +, L − be
G-ample line bundles in adjacent chambers of the G-ample cone, and
define L (t) = L t

+⊗L 1−t
− . Suppose that the line between them crosses
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a wall precisely at L (t0). Following Thaddeus, define

X± = Xss(L t0)\Xss(L ∓)

X0 = Xss(L t0)\(Xss(L +) ∪Xss(L −))

Theorem 2.2. [Tha96] Let x ∈ X0 be a smooth point of X. Suppose
that G·x is closed in Xss(L t0) and that Gx

∼= C∗. Then the natural map
X//L±G→ X//L t0G is an isomorphism outside of X±//L±G. Over a

neighborhood of x in X0//L t0G, X±//L±G are fibrations whose fibers
are weighted projective spaces.

In order to determine whether a point is (semi)stable, we will make
frequent use of Mumford’s numerical criterion. Given a G-ample line
bundle L and a one-parameter subgroup λ : C∗ → G, it is standard to
choose coordinates so that λ acts diagonally on H0(X,L )∗. In other
words, it is given by diag(ta1 , ta2 , . . . , tan). We will refer to the ai’s as
the weights of the C∗ action. For a point x ∈ X, Mumford defines

µλ(x) = min(ai|xi 6= 0).

Then x is stable (semistable) if and only if µλ(x) < 0 (resp. µλ(x) ≤ 0)
for every nontrivial 1-parameter subgroup λ of G (see Theorem 2.1 in
[MFK94]).

3. Hessians

Here we set up the GIT problem that appears in sections 4 and 5.
We also identify a collection of G-invariant divisors that will be useful
for analyzing this problem.

Let Y be a smooth projective surface over C, L ′ an effective line
bundle on Y , and Z = PH0(Y,L ′). Let

X = {(p, C) ∈ Y × Z|p ∈ C}.

We denote the various maps as in the following diagram:

X

f

��

i
// Y × Z

π2

��

π1
// Y

Z
id

// Z

If L ′ is base-point free, then X is a projective space bundle over Y ,
so it is smooth and PicX ∼= PicY × Z . We will later study the GIT
quotients of X by the natural action of Aut(Y ).

If C is a curve on Y and L is another line bundle on Y , then for
every point p ∈ C there are n + 1 = h0(C,L |C) different orders of
vanishing of sections s ∈ H0(C,L |C).
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Definition 2. When written in increasing order,

aL0 (p) < · · · < aLn (p)

the orders of vanishing are called the vanishing sequence of L at p.
The weight of L at p is defined to be wL (p) =

∑n
i=0(a

L
i (p) − i). A

point is said to be an L -flex if the weight of L at the point is nonzero.

In other words, p is an L -flex if the vanishing sequence of L at p is
anything other than 0 < 1 < · · · < n.

Definition 3. The divisor of L -flexes is
∑

p∈C w
L (p)p. It corre-

sponds to a section WL of a certain line bundle called the Wronskian
of L . We say that a curve H on Y is an L -Hessian if the restriction
of H to C is precisely the divisor of L -flexes.

Returning to our family of curves f : X → Z above, suppose that L
is a line bundle on Y such that the pushforward f∗(π1 ◦ i)∗L is locally
free of rank n + 1. We define a relative L -Hessian to be a divisor
H ⊆ X whose restriction to each fiber is the divisor of f∗(π1 ◦ i)∗L -
flexes. Relative L -Hessians were studied by Cukierman [Cuk97], who
shows:

Proposition 3.1. [Cuk97] The class of the relative L -Hessian is

(n+ 1)c1(π1 ◦ i)∗L +

(
n+ 1

2

)
c1Ω

1
X/Z − c1f ∗f∗(π1 ◦ i)∗L .

In our particular case, we can determine this class more explicitly.

Corollary 3.2. For X, Y, and Z as above, the class of the relative
L -Hessian is

(n+ 1)c1(π1 ◦ i)∗L +

(
n+ 1

2

)
(c1π

∗
1Ω1

Y |X + c1(π1 ◦ i)∗L ′ + c1f
∗O Z(1))

−h0(Y,L ⊗ L ′∗)(c1f ∗O Z(1)).

Proof. We follow the proof in [Cuk97]. If I is the ideal sheaf of X in
Z × Y , then we have the exact sequence

0→ I/I2 → π∗1Ω1
Y |X → Ω1

X/Z → 0

so we have

c1Ω
1
X/Z = c1π

∗
1Ω1

Y |X − c1I/I2.

Also, X is the scheme of zeros of a section of the line bundle E =
(π1 ◦ i)∗L ′ ⊗ f ∗O Z(1) on Y × Z. Note that I/I2 ∼= E∗ ⊗O X = E∗|X .
It follows that

c1Ω
1
X/Z = c1(π1 ◦ i)∗Ω1

Y |X + c1E

= c1(π1 ◦ i)∗Ω1
Y |X + c1(π1 ◦ i)∗L ′ + c1f

∗O Z(1).
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Now, consider the exact sequence on Y × Z

0→ π∗1L⊗ E∗ → π∗1L→ π∗1L|X → 0

From the projection formula, we see that

π2∗(π
∗
1L ⊗ E∗) = H0(Y,L ⊗ L ′∗)⊗O Z(−1)

and R1π2∗(π
∗
1L⊗ E∗) = 0. This gives us the exact sequence on Z

0→ π2∗(π
∗
1L⊗ E∗)→ π2∗π

∗
1L→ π2∗(π

∗
1L|X)→ 0

Since the middle term is a trivial bundle, the result follows from Propo-
sition 3.1. �

For the remainder of this section, we identify specific examples that
will appear in the arguments to follow.

In section 4 we consider the case that Y = P 2 and L ′ = O Y (d) for
some d ≥ 3. By the above, we see that for every m and d, a relative
O Y (m)-Hessian Hm exists. Since c1π

∗
1Ω1

Y |X = O X(−3, 0), if m < d,
Hm is cut out by a G-invariant section Wm of

O X((n+ 1)m+

(
n+ 1

2

)
(d− 3),

(
n+ 1

2

)
),

where n+ 1 = h0(Y,L ) =
(
m+2

2

)
.

In particular, H1 is cut out by a section W1 ∈ H0(O X(3(d− 2), 3)).
W1 vanishes at (p, C) if C is smooth at p and the tangent line to C at
p intersects C with multiplicity at least 3, or if p is a singular point of
C. Similarly, H2 is defined by a section of W2 ∈ H0(O X(15d−33, 15)).
W2 vanishes at (p, C) if C is smooth at p and the osculating conic to C
at p intersects C with multiplicity at least 6, or if p is a singular point
of C.

It is known that H2 = H1 ∪H ′2 is reducible ( see Proposition 6.6 in
[CF91]). Indeed, if a line meets C with multiplicity 3 at p, then the
double line meets C with multiplicity 6 at p. The points of H ′2 ∩C are
classically known as the sextatic points of C, and H ′2 is cut out by
a G-invariant section W ′

2 of O X(12(d − 9
4
), 12). A simple calculation

shows that H ′2∩C also contains those points of C where wO C(1)(p) > 1.
These include singular points and points where the tangent line to C
is a hyperflex (a line that intersects C at p with multiplicity ≥ 4).

Similarly, in section 5 we consider the case that Y = P 1 × P 1, and
L ′ = O Y (d, d). Note that, for every (m1,m2, d) with mi < d, a relative
O Y (m1,m2)-Hessian H ′m1,m2

exists. In this case, our formulas show
that the rank of f∗(π1 ◦ i)∗O Y (m1,m2) is

n+ 1 = h0(O Y (m1,m2)) = (m1 + 1)(m2 + 1).
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Also, since c1π

∗
1Ω1

Y |X = O X(−2,−2, 0), we see that H ′m1,m2
is cut out

by a section W ′
m1,m2

∈ H0(O X(a1, a2, b)) for

ai = (n+ 1)mi +

(
n+ 1

2

)
(d− 2)

b =

(
n+ 1

2

)
.

Since P 1×P 1 has a natural involution, we know that W ′
m1,m2

cannot
be G-invariant if m1 6= m2. Notice, however, that W ′

m1,m2
⊗W ′

m2,m1
is

a G-invariant section of O X(a, a, b) for

n+ 1 = (m1 + 1)(m2 + 1)

a = (n+ 1)(m1 +m2) + 2

(
n+ 1

2

)
(d− 2)

b = 2

(
n+ 1

2

)
.

We will use Wm1,m2 to denote the G-invariant section described here,
and Hm1,m2 to denote its zero locus.

In particular, W0,1 ∈ H0(O X(2(d − 1), 2(d − 1), 2)). It vanishes
at a point (p, C) if C intersects one of the two lines through p with
multiplicity at least 2 (or, equivalently, if the osculating (1, 1) curve
is a pair of lines). Similarly, W1,1 ∈ H0(O X(2(3d − 4), 2(3d − 4), 6)).
It vanishes at a point (p, C) if there is a curve of bidegree (1, 1) that
intersects C with multiplicity 4 or more at p.

4. Contraction of M3,1

In this section, we prove our main result in the genus 3 case:

Theorem 4.1. There is a birational contraction of M3,1 contracting
the Weierstrass divisor BN1

3,(0,3).

In order to construct a birational model for M3,1, we consider GIT
quotients of the universal family over the space of plane quartics. The
image of the Weierstrass divisor in this model is precisely the Hessian
H1, and we exhibit a GIT quotient in which this locus is contracted.
For most of this section we will consider, more generally, plane curves
of any degree d ≥ 3.

Specifically, following the set-up of the previous section, we let

X = {(p, C) ∈ P 2 × |O (d)| |p ∈ C}.
Then π2 : X → |O (d)| is the family of all plane curves of degree d. Our
goal is to study the GIT quotients ofX by the action ofG = PSL(3,C).
By the above, we know that PicX ∼= Z × Z , so the quotient X//LG
depends on a single parameter t which we call the slope of L .
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Definition 4. We say a line bundle L has slope t if L = π∗1O (a) ⊗
π∗2O (b) with t = a

b
. We write Xs(t) and Xss(t) for the sets of stable

and semistable points, and X//tG for the corresponding GIT quotient.

Here we describe the numerical criterion for points in X. Let p =
(x0, x1, x2) and

C =
∑

i+j+k=d

ai,j,kx
i
0x

j
1x

k
2.

Then a basis for H0(O X(a, b)) consists of monomials of the form

a∏
α=1

xlα

b∏
β=1

aiβ ,jβ ,kβ .

The one-parameter subgroup with weights (r0, r1, r2) acts on the mono-
mial above with weight

a∑
α=1

rlα −
b∑

β=1

(iβr0 + jβr1 + kβr2).

In our case, we will only be interested in maximizing or minimizing
this weight, so it suffices to consider monomials of the form xal a

b
i,j,k. In

this case, the one-parameter subgroup acts with weight arl − b(ir0 +
jr1 + kr2), which is proportional to

µλ(xl, ai,j,k) := trl − (ir0 + jr1 + kr2).

The G-ample cone of X has two edges, one of which occurs when
t = 0. In the case where d = 4, we obtain the well-known moduli
space of plane quartics. Descriptions of Xs(0) and Xss(0) appear in
[MFK94], and the quotient X//0G plays an important role in the bi-
rational geometry of M3. For example, Hyeon and Lee show that this
quotient is a log canonical model for M3 [HL10], and the space also
appears in work on moduli of K3 surfaces [Art09] and cubic threefolds
[CML09].

We will see that, when t is large, stability conditions reflect the in-
flectionary behavior of linear series at the marked point. Thus, as t in-
creases, the curve is allowed to have more complicated singularities, but
vanishing sequences at the marked point become more well-behaved.

Our first result is to identify the other edge of the G-ample cone. It
is determined by the Wronksian W1.

Proposition 4.2. An edge of the G-ample cone occurs at t = d− 2.

Proof. It suffices to show that Xss(d− 2) 6= Xs(d− 2) = ∅. It is clear
that Xss(d−2) 6= ∅, since W1 is a G-invariant section ofO X(3(d−2), 3).

To show that Xs(d− 2) = ∅, we invoke the numerical criterion. Let
(p, C) ∈ X. By change of coordinates, we may assume that p = (0, 0, 1)
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and the tangent line to C at p is x0 = 0. So in the coordinates described
above, we have a0,0,d = a0,1,d−1 = 0.

Now consider the 1-parameter subgroup with weights (−1, 0, 1). We
have

µλ(x2, ai,j,k) = d− 2 + i− k
which is negative whenever i− k− 2 < −d = −i− j− k, or 2i+ j < 2.
This only occurs when both i = 0 and j < 2, in other words, when
either a0,0,d or a0,1,d−1 is nonzero. By assumption, however, this is not
the case, so (p, C) /∈ Xs(d − 2). Since (p, C) was arbitrary, it follows
that Xs(d− 2) = ∅.

�

Next, we identify the adjacent chamber in the G-ample cone. It lies
between the slopes corresponding to W1 and W ′

2. In what follows, we
let S denote the set of all pointed curves (p, C) admitting the following
description: C consists of a smooth conic together with d− 2 copies of
the tangent line through a point q 6= p on C. Notice that S ⊂ H ′2.

Proposition 4.3. For any t ∈ (d− 9
4
, d−2), Xs(t) = Xss(t) = X\(H1∪

S).

Proof. We first show that Xss(t) ⊆ X\H1. Suppose that (p, C) ∈ H1.
As before, by change of coordinates, we may assume that p = (0, 0, 1)
and the tangent line to C at p is x0 = 0. Since (p, C) ∈ H1, either
p is a singular point of C or this tangent line intersects C at p with
multiplicity at least 3. Thus we have a0,0,d = a0,1,d−1 = 0, and either
a1,0,d−1 = 0 (if p is singular) or a0,2,d−2 = 0 (if p is a flex).

We first examine the case where p is a flex. In this case, consider the
1-parameter subgroup with weights (−5, 1, 4). Then

µλ(x2, ai,j,k) = 4t+ 5i− j − 4k > 4d− 9 + 5i− j − 4k = 9i+ 3j − 9

which is non-negative when 3i+j ≥ 3. Since, by assumption, C has no
non-zero terms with both i = 0 and j < 3, we see that (p, C) /∈ Xss(t).

Next we look at the case where p is a singular point. Consider the
1-parameter subgroup with weights (−1,−1, 2). Then we have

µλ(x2, ai,j,k) = 2t+ i+ j − 2k > 2d− 9

2
+ i+ j − 2k = 3i+ 3j − 9

2

which is non-negative when i + j ≥ 3
2
. By assumption, C has no

non-zero terms where one of i, j is 0 and the other is at most 1, so
(p, C) /∈ Xss(t). It follows that Xss(t) ⊆ X\H1.

Next we show that Xss(t) ⊆ X\S. Suppose that (p, C) ∈ S. With-
out loss of generality, we may assume that C is of the form

C = xd−2
0 (ad,0,0x

2
0 + ad−1,1,0x0x1 + ad−2,2,0x

2
1 + ad−1,0,1x0x2).
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Now, consider the 1-parameter subgroup with weights (−1, 0, 1). Then

µλ(xl, ai,j,k) ≥ −t+ i− k > 2− d+ i− k
which is non-negative when i−k ≥ d−2. It follows that (p, C) /∈ Xss(t).

Now we show thatX\(H1∪S) ⊆ Xs(t). Suppose that (p, C) /∈ Xs(t).
Then there is a nontrivial 1-parameter subgroup that acts on (p, C)
with non-negative weight. By change of basis, we may assume that
this subgroup acts with weights (r0, r1, r2), with r0 ≤ r1 ≤ r2. Since
this is a nontrivial subgroup of PSL(3,C), we know that r0 < 0 < r2
and r0 + r1 + r2 = 0. We then have

µλ(xl, ai,j,k) = trl − (r0i+ r1j + r2k) ≥ 0

We divide this into three cases, depending on p.
Case 1 – p = (0, 0, 1): In this case, rl = r2. If r1 ≥ 0, then

tr2 < (d − 2)r2 ≤ 2r1 + (d − 2)r2. On the other hand, if r1 < 0¡
then tr2 < (d − 2)r2 < r0 + (d − 1)r2. Since the subgroup acts with
non-negative weight, it follows that a0,0,d = a0,1,d−1 = 0, and either
a1,0,d−1 = 0 or a0,2,d−2 = 0. Hence, (p, C) ∈ H1.

Case 2 – p lies on the line x0 = 0, but not on the line x1 = 0:
In this case, rl = r1. If r1 > 0, then since r1 ≤ r2, we have tr1 < dr1 ≤
r1j + r2(d− j), so we see that a0,0,d = a0,1,d−1 = · · · = a0,d,0 = 0. This
means that p lies on a linear component of C, and therefore (p, C) ∈ H1.

On the other hand, if r1 ≤ 0, then since r2 ≥ −2r1, we see that
tr1 ≤ (d − 3)r1 ≤ (d − 1)r1 + r2 ≤ r1j + (d − j)r2 + r2 for j ≤ d − 1.
Note furthermore that if r1 < 0, then the first of these inequalities is
strict, whereas if r1 = 0, the second inequality is strict. It follows that
a0,0,d = a0,1,d−1 = · · · = a0,d−1,1 = 0. This means that either p lies on a
linear component of C or the only point of C lying on the line x0 = 0
also lies on the line x1 = 0. Again, we see that (p, C) ∈ H1.

Case 3 – p does not lie on the line x0 = 0: In this case, rl = r0.
Since r0 < 0 and r0 ≤ r1 ≤ r2, we see that tr0 < (d−3)r0 = (d−2)r0 +
r1 + r2 < r0i+ r1j + r2k for i ≤ d− 2, k 6= 0. Now, if r0 ≥ 4r1, then we
have tr0 < (d− 9

4
)r0 = (d− 5

4
)r0 + r1 + r2 ≤ (d− 1)r0 + r2. It follows

that C is of the form

C =
∑
i+j=d

ai,j,0x
i
0x

j
1.

In other words, C is a union of d lines. In this case, the tangent line
to every point of C is a component of C itself, so (p, C) ∈ H1.

On the other hand, if r0 < 4r1, then tr0 < (d− 9
4
)r0 = (d−3)r0+ 3

4
r0 <

(d− 3)r0 + 3r1. It follows that C is of the form

C = xd−2
0 (ad,0,0x

2
0 + ad−1,1,0x0x1 + ad−2,2,0x

2
1 + ad−1,0,1x0x2)

hence C ∈ S.
�
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We now consider the wall in the G-ample cone determined by W ′

2.

Proposition 4.4. A wall of the G-ample cone occurs at t = d− 9
4
. More

specifically, Xss(t) = X\((H1 ∩H ′2) ∪ S), and Xs(t) ⊆ X\(H1 ∪ S).

Proof. First, notice that if (p, C) /∈ H ′2, then (p, C) ∈ Xss(t), since
W ′

2 is a G-invariant section of O X(12(d− 9
4
), 12) that does not vanish

at (p, C). Moreover, by general variation of GIT we know that, when
passing from a chamber to a wall, we have

Xss(t+ ε) ⊆ Xss(t)

Xs(t) ⊆ Xs(t+ ε)

Thus, Xs(t) ⊆ X\(H1 ∪ S) and X\((H1 ∩H ′2) ∪ S) ⊆ Xss(t).
Now, suppose that (p, C) ∈ S. Using the same argument as above

with the same 1-parameter subgroup, we see that (p, C) /∈ Xss(t).
Next, suppose that (p, C) ∈ H1. If p is a singular point of C, then

we see that (p, C) /∈ Xss(t) by the same argument as before, using the
subgroup with weights (−1,−1, 2).

The only other possibility is that p is a flex. In this case, we again
consider the 1-parameter subgroup with weights (−5, 1, 4). As before,
we have

µλ(x2, ai,j,k) = 4d− 9 + 5i− j − 4k = 9i+ 3j − 9

which is non-negative when 3i+ j ≥ 3. As before, we see that (p, C) /∈
Xs(t).

Notice furthermore that if (p, C) ∈ H1 ∩H ′2, then either a0,3,d−3 = 0
or a1,0,d−1 = 0. Now consider the 1-parameter subgroup with weights
(−5− ε, 1 + ε, 4). For ε > 0, we see that any curve with a0,3,d−3 = 0 is
unstable. Conversely, if ε < 0, we see that any curve with a1,0,d−1 = 0
is unstable. From our observations above, we may therefore conclude
that Xss(t) ⊆ X\((H1 ∩H ′2) ∪ S).

�

We are left to consider the behavior of our quotient at the wall
crossing defined by t0 = d− 9

4
. As in Theorem 2.2, we let

X± = Xss(t0)\Xss(t0 ∓ ε)

X0 = Xss(t0)\(Xss(t0 + ε) ∪Xss(t0 − ε))
Our first task is to determine X− and X0 in this situation.

Proposition 4.5. With the set-up above, X− = H1\H ′2. X0 is the set
of all pointed curves (p, C) consisting of a cuspidal cubic plus d − 3
copies of the projectivized tangent cone at the cusp. The point p is the
unique smooth flex point of the cuspidal cubic.
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Proof. We have already seen that Xss(t0) = X\((H1 ∩ H ′2) ∪ S) and
Xss(t0 + ε) = X\(H1 ∪ S). Thus, X− = H1\H ′2.

To prove the statement about X0, let (p, C) ∈ X0. Notice that, since
X0 ⊆ X−, p is a smooth point of C and the tangent line to C at p
intersects C with multiplicity exactly 3. Since (p, C) /∈ Xss(t0 − ε),
there must be a nontrivial 1-parameter subgroup that acts on (p, C)
with strictly positive weight. Again we assume that this subgroup acts
with weights (r0, r1, r2), with r0 ≤ r1 ≤ r2. As before, we know that
r0 < 0 < r2 and r0 + r1 + r2 = 0. Again we have

µλ(xl, ai,j,k) = trl − (r0i+ r1j + r2k) > 0

We divide this into three cases, depending on p.
Case 1 – p = (0, 0, 1): In this case, rl = r2. Now, if tr2 ≥ r0 + (d−

1)r2, then (d − 9
4
)r2 > r0 + (d − 1)r2, so r1 >

1
4
r2. This means that

tr2 < (d − 9
4
)r2 < 3r1 + (d − 3)r2. It follows that a0,0,d = a0,1,d−1 = 0,

and either a1,0,d−1 = 0 or a0,2,d−2 = a0,3,d−3 = 0. But we know that p is
a smooth point of C and the tangent line to C at p intersects C with
multiplicity exactly 3, so neither of these is a possibility.

Case 2 – p lies on the line x0 = 0, but not on the line x1 = 0:
Using the same argument as before, we see that p lies on a linear
component of C, which is impossible.

Case 3 – p does not lie on the line x0 = 0: In this case, rl = r0.
Again, since r0 < 0 and r1 < r0 < r2, we see that tr0 < (d − 3)r0 =
(d− 2)r0 + r1 + r2 < r0i+ r1j + r2k for i ≤ d− 2, k 6= 0. Notice that,
if tr0 < (d − 1)r0 + r2, then as before we see that C is the union of d
lines, which is impossible.

We therefore see that (d − 12
5

)r0 > tr0 ≥ (d − 1)r0 + r2. But then
7
5
r0 < −r2 = r0 + r1, so r0 <

5
2
r1. It follows that tr0 < (d − 12

5
)r0 <

(d− 4)r0 + 4r1 ≤ r0i+ r1j for j ≥ 4.
We see that C is of the form

C = xd−3
0 (ad,0,0x

3
0+ad−1,1,0x

2
0x1+ad−2,2,0x0x

2
1+ad−3,3,0x

3
1+ad−1,0,1x

2
0x2).

Thus, C consists of a cuspidal cubic together with d − 3 copies of the
projectivized tangent cone to the cusp. The point p is the unique flex
point of the cuspidal cubic.

It is clear that this (p, C) ∈ X−, since the tangent line to C at p
intersects C with multiplicity exactly 3. To see that (p, C) /∈ Xss(t0−ε),
consider again the 1-parameter subgroup with weights (5,−1,−4). The
characterization of X0 above then follows from the fact that all cuspidal
plane cubics are projectively equivalent.

�

Corollary 4.6. The map X//t0−εG → X//t0G contracts the locus
H1\H ′2 to a point. Outside of this locus, the map is an isomorphism.
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Proof. Let (p, C) ∈ X0. Since all cuspidal plane cubics are projectively
equivalent, G ·(p, C) = X0, so G ·(p, C) is closed in Xss(t0) and X0//G
is a point. An automorphism of P 1 extends to (p, C) if and only if it
fixes the point p and the cusp, and thus the stabilizer of (p, C) is
isomorphic to C∗. The conclusion follows from Theorem 2.2.

�

We are particularly interested in the case where d = 4, because in
this case X//t0−εG is a birational model for M3,1. In particular, we
have the following:

Proposition 4.7. There is a birational contraction β : M3,1 99K
X//t0−εG.

Proof. It suffices to exhibit a morphism β−1 : V → M3,1, where V ⊆
X//t0−εG is open with complement of codimension ≥ 2 and β−1 is an
isomorphism onto its image. To see this, let U ⊆ Xss(t0 − ε) be the
set of all moduli stable pointed curves (p, C) ∈ Xss(t0 − ε). Notice
that U is invariant under the action of the group and its complement is
strictly contained in the discriminant locus ∆, which is an irreducible
G-invariant hypersurface in X. Note furthermore that there are stable
points contained in both X\∆ and ∆ ∩ U . Thus, the containments
(X\U)//t0−εG ⊂ ∆//t0−εG and ∆//t0−εG ⊂ X//t0−εG are strict. It
follows that the complement of U//G in the quotient has codimension
≥ 2.

By the universal property of the moduli space, since U is a family
of moduli stable curves, it admits a unique map U → M3,1. Since U
is contained in the semistable locus and this map is G-equivariant, it
factors uniquely through a map U//t0−εG→ M3,1. Since every degree
4 plane curve is canonical, two such curves are isomorphic if and only
if they differ by an automorphism of P 2. It follows that this map is an
isomorphism onto its image.

�

Theorem 4.8. There is a birational contraction of M3,1 contracting
the Weierstrass divisor BN1

3,(0,3). Furthermore, the divisors BN1
3,(0,3),

BN1
2 , ∆1 and ∆2 span a simplicial face of NE

1
(M3,1).

Proof. The composition M3,1 99K X//t0−εG → X//t0G is a birational
contraction. By the above, the Weierstrass divisor is contracted by
this map. It therefore suffices to show that the isomorphism β−1 con-
structed in the preceding theorem does not contain in its image the
generic point of BN1

2 or ∆i for i ≥ 1. For BN1
2 this is automatic,

since every smooth curve in X is canonically embedded and hence
non-hyperelliptic. For ∆i this follows directly from the fact that ∆∩U
is an irreducible divisor in U whose generic point is an irreducible nodal
curve.
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�

5. Contraction of M4,1

We now turn to the case of genus 4 curves. Our main result will be
the following:

Theorem 5.1. There is a birational contraction of M4,1 contracting
the pointed Brill-Noether divisor BN1

3,(0,2).

In a similar way to the previous section, we will construct a birational
model for M4,1 by considering GIT quotients of the universal family
over the space of curves in P 1 × P 1. Here, the Hessian H0,1 is again
the image of a pointed Brill-Noether divisor. As above, our goal is to
find a GIT quotient in which this locus is contracted. Let Y = P 1×P 1

and
X = {(p, C) ∈ Y × |O (d, d)| |p ∈ C}.

Then π2 : X → |O (d, d)| is the family of all curves of bidegree (d, d).
Our goal, as before, is to study the GIT quotients of X by the action
of G = PSO(4,C). By the above, we know that PicX ∼= Z 3, but we
are only interested in those line bundles of the form O X(a, a, b). We
can therefore define the slope of a line bundle L ∈ PicX as above.

Definition 5. We say a line bundle L has slope t if L = π∗1O (a, a)⊗
π∗2O (b) with t = a

b
. We write Xs(t) and Xss(t) for the sets of stable

and semistable points, and X//tG for the corresponding GIT quotient.

Here we describe the numerical criterion for points in X. Let p =
(x0, x1 : y0, y1) and

C =
∑

0≤i,j≤d

ai,jx
i
0x

d−i
1 yj0y

d−j
1 .

Then a basis for H0(O X(a, a, b)) consists of monomials of the form

a∏
α0=1

xlα0
ymα1

b∏
β=1

aiβ ,jβ .

The one-parameter subgroup with weights (−r0, r0,−r1, r1) acts on the
monomial above with weight
b∑

β=1

(r0(iβ − (d− iβ)) + r1(jβ − (d− jβ)))−
a∑

α0=1

((−1)lα0r0 + (−1)mα1r1).

In our case, we will only be interested in maximizing or minimizing this
weight, so it suffices to consider monomials of the form xal y

a
ma

b
i,j. In

this case, the one-parameter subgroup acts with weight b(r0(2i− d) +
r1(2j − d))− a((−1)lr0 + (−1)mr1), which is proportional to

µλ(xl, ym, ai,j) := r0(2i− d) + r1(2j − d)− t((−1)lr0 + (−1)mr1).
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As in the previous section, when t = 0, we obtain a moduli space

of curves of bidegree (d, d). In particular, the case d = 3 is notable
for being a birational model for M4. We will see that as t increases,
stable curves are allowed to have more complicated singularities, but
the vanishing sequences of linear series at the marked point become
more well-controlled. We begin by identifying an edge of the G-ample
cone corresponding to the Wronskian W0,1.

Proposition 5.2. An edge of the G-ample cone occurs at t = d− 1.

Proof. It suffices to show that Xss(d− 1) 6= Xs(d− 1) = ∅. It is clear
that Xss(d − 1) 6= ∅, since W0,1 is a G-invariant section of O X(2(d −
1), 2(d− 1), 2).

To show that Xs(d− 1) = ∅, we invoke the numerical criterion. Let
(p, C) ∈ X. By change of coordinates, we may assume that p = (0, 1 :
0, 1). So, in the coordinates described above, we have a0,0 = 0.

Now consider the 1-parameter subgroup with weights (−1, 1,−1, 1).
We have

µλ(x1, y1, ai,j) = 2(d− 1) + (2i− d) + (2j − d)

which is negative whenever (2i−d)+(2j−d) < −2(d−1), or i+j < 1.
This only occurs when i = j = 0, in other words, when a0,0 is nonzero.
By assumption, however, this is not the case, so (p, C) /∈ Xs(d − 1).
Since (p, C) was arbitrary, it follows that Xs(d− 1) = ∅.

�

As above, we identify the adjacent chamber in the G-ample cone. It
lies between the slopes corresponding to the Wronskians W0,1 and W1,1.
In what follows, we let S denote the set of all pointed curves (p, C)
admitting the following description: C consists of a smooth curve of
bidegree (1, 1) together with d − 1 copies of the two lines through a
point q 6= p on C. Notice that S ⊂ H1,1.

Proposition 5.3. For any t ∈ (d − 4
3
, d − 1), Xs(t) = Xss(t) =

X\(H0,1 ∪ S).

Proof. We first show that Xss(t) ⊆ X\H0,1. Suppose that (p, C) ∈
H0,1. As before, by change of coordinates, we may assume that p =
(0, 1 : 0, 1). Since (p, C) ∈ H0,1, C intersects one of the two lines
through p with multiplicity at least 2. Without loss of generality, we
may assume this line to be x0 = 0. Thus, if we write C as above, then
a0,0 = a0,1 = 0. Now, consider the 1-parameter subgroup with weights
(−2, 2,−1, 1). Then

µλ(x1, y1, ai,j) = 3t+ 2(2i−d) + (2j−d) > 3d− 4 + 2(2i−d) + (2j−d)

= 2(2i+ j − 2)
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which is non-negative when 2i+j ≥ 2. Since, by assumption, C has no
non-zero terms with both i = 0 and j ≤ 1, we see that (p, C) /∈ Xss(t).

Next we show that Xss(t) ⊆ X\S. Suppose that (p, C) ∈ S. With-
out loss of generality, we may assume that C is of the form

C = xd−1
0 yd−1

0 (ad,dx0y0 + ad−1,dx1y0 + ad,d−1x0y1).

Now, consider the 1-parameter subgroup with weights (1,−1, 1,−1).
Then

µλ(xl, ym, ai,j) ≥ −2t−(2i−d)−(2j−d) > −2d+2−(2i−d)−(2j−d)

= −2((d− i) + (d− j)− 1)

which is non-negative when (d − i) + (d − j) ≤ 1. It follows that
(p, C) /∈ Xss(t).

Now we show that X\(H0,1 ∪ S) ⊆ Xs(t). Suppose that (p, C) /∈
Xs(t). Then there is a nontrivial 1-parameter subgroup that acts on
(p, C) with non-negative weight. By change of basis, we may assume
that this subgroup acts with weights (−r0, r0,−r1, r1), with 0 ≤ r0 ≤ r1
and r1 > 0. We then have

µλ(xl, ym, ai,j) = r0(2i− d) + r1(2j − d)− t((−1)lr0 + (−1)mr1) ≥ 0

We divide this into four cases, depending on p.
Case 1 – p = (0, 1 : 0, 1): In this case, l = m = 1. We have

t(−r0 − r1) > (d − 1)(−r0 − r1) ≥ −(d − 2)r0 − dr1. It follows that
a0,0 = a1,0 = 0, so (p, C) ∈ H0,1.

Case 2 – p lies on the line y0 = 0, but not the line x0 = 0: In
this case, l = 1 and m = 0. Here, t(−r0 + r1) ≥ (d − 2)(−r0 + r1) ≥
−dr0 + kr1 for all k ≤ d− 2. Note further that if r0 6= r1, then the first
inequality is strict, whereas if r0 = r1, then the second inequality is
strict. We therefore see that a0,k = 0 for all k ≤ d− 2. If a0,d 6= 0, then
every point of C that lies on the line x0 = 0 also lies on the line y0 = 0,
a contradiction. We therefore see that a0,d = 0 as well, but this means
that p lies on a linear component of C, and therefore (p, C) ∈ H0,1.

Case 3 – p lies on the line x0 = 0, but not on the line y0 = 0: In
this case, l = 0 and m = 1. Note that t(r0−r1) ≥ d(r0−r1) ≥ dr0−kr1
for all k < d. Again, if r0 6= r1, then the first inequality is strict,
whereas if r0 = r1, then the second inequality is strict. It follows that
ak,0 = 0 for all k < d, which means that either y0 = 0 is a linear
component of C or every point of C lies on the line y0 = 0 also lies on
the line y0 = 0. Thus (p, C) ∈ H0,1.

Case 4 – p does not lie on either of the lines x0 = 0 or y0 = 0:
In this case, l = m = 0. Now note that t(r0 + r1) > (d− 2)(r0 + r1), so
ak0,k1 = 0 if k0 and k1 are both less than d. Furthermore, since r0 ≤ r1,
(d − 2)(r0 + r1) ≥ dr0 + (d − 4)r1, so ad,k = 0 for k ≤ d − 2. Now,
if (d − 4

3
)(r0 + r1) ≤ (d − 4)r0 + dr1, then 2r0 ≤ r1, so t(r0 + r1) >
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(d− 4

3
)(r0 + r1) ≥ dr0 + (d− 2)r1. It follows that either ad,d−1 = 0, in

which case C is a union of 2d lines and hence (p, C) ∈ H0,1, or ak,d = 0
for all k ≤ d− 2, in which case C ∈ S.

�

We now consider the wall in the G-ample cone determined by the
Wronskian W1,1.

Proposition 5.4. A wall of the G-ample cone occurs at t = d− 4
3
. More

specifically, Xss(t) = X\((H0,1∩H1,1)∪S), and Xs(t) ⊆ X\(H0,1∪S).

Proof. First, notice that if (p, C) /∈ H1,1, then (p, C) ∈ Xss(t), since
W1,1 is a G-invariant section of O X(6(d− 4

3
), 6(d− 4

3
), 6) that does not

vanish at (p, C). Moreover, by general variation of GIT we know that,
when passing from a chamber to a wall, we have

Xss(t+ ε) ⊆ Xss(t)

Xs(t) ⊆ Xs(t+ ε)

Thus, Xs(t) ⊆ X\(H0,1 ∪ S) and X\((H0,1 ∩H1,1) ∪ S) = Xss(t).
Now, suppose that (p, C) ∈ S. Using the same argument as before

with the same 1-parameter subgroup, we see that (p, C) /∈ Xss(t).
Next, suppose that (p, C) ∈ H0,1. In this case, we again consider the

1-parameter subgroup with weights (−2, 2,−1, 1). As before, we have

µλ(x1, y1, ai,j) = 3d− 4 + 2(2i− d) + (2j − d) = 2(2i+ j − 2)

which is non-negative when 2i+j ≥ 2. Since, by assumption, C has no
non-zero terms with both i = 0 and j ≤ 1, we see that (p, C) /∈ Xs(t).

Notice furthermore that if (p, C) ∈ H0,1 ∩H1,1, this means that the
osculating (1, 1) curve to C at p is the pair of lines through that point,
and this curve intersects C with multiplicity at least 4. This means
that either a0,1 = 0 or a2,0 = 0, which implies that the expression
2i + j − 2 above is zero for at most one term, and strictly positive
for all of the others. Now consider the 1-parameter subgroup with
weights (−2 − ε, 2 + ε,−1, 1). For ε > 0, we see that any curve with
a0,1 = 0 is unstable. Conversely, if ε < 0, we see that any curve
with a2,0 = 0 is unstable. It follows that (p, C) /∈ Xss(t), and thus
Xss(t) = X\((H0,1 ∩H1,1) ∪ S).

�

Again, we want to use Theorem 2.2 to study the wall crossing at
t0 = d− 4

3
. Again, we let

X± = Xss(t0)\Xss(t0 ∓ ε)

X0 = Xss(t0)\(Xss(t0 + ε) ∪Xss(t0 − ε))
and determine X− and X0.
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Proposition 5.5. With the set-up above, X− = H0,1\H1,1. X0 is the
set of all pointed curves (p, C) admitting the following description: C
consists of a smooth curve of bidegree (1, 2) (or (2, 1)), together with
d− 1 copies of the tangent line to this curve through a point that has a
tangent line, and d−2 copies of the other line through this same point.
The marked point p is the unique other point on the smooth (1, 2) curve
that has a tangent line.

Proof. We have already seen that Xss(t0) = X\((H0,1 ∩H1,1)∪ S) and
Xss(t0 + ε) = X\(H0,1 ∪ S). Thus, X− = H0,1\H1,1.

To prove the statement about X0, let (p, C) ∈ X0. Notice that,
since X0 ⊆ X−, exactly one of the two lines through p intersects C
with multiplicity exactly 2. Since (p, C) /∈ Xss(t0 − ε), there must
be a nontrivial 1-parameter subgroup that acts on (p, C) with strictly
positive weight. Again we assume that this subgroup acts with weights
(−r0, r0,−r1, r1), with 0 ≤ r0 ≤ r1 and r1 > 0. Again we have

µλ(xl, ym, ai,j) = r0(2i− d) + r1(2j − d)− t((−1)lr0 + (−1)mr1) > 0

We divide this into four cases, depending on p.
Case 1 – p = (0, 1 : 0, 1): In this case, l = m = 1. Again we have

t(−r0−r1) > (d−1)(−r0−r1) ≥ −(d−2)r0−dr1. Now, if t(−r0−r1) ≤
−dr0−(d−2)r1, then (d− 4

3
)(−r0−r1) < −dr0−(d−2)r1, so r1 > 2r0.

This means that t(−r0 − r1) < (d − 4
3
)(−r0 − r1) < −(d − 4)r0 − dr1.

It follows that a0,0 = a1,0 = 0, and either a0,1 = 0 or a2,0 = 0. But
we know that exactly one of the two lines through p intersects C with
multiplicity exactly 2, so neither of these is a possibility.

Case 2 – p lies on the line y0 = 0, but not the line x0 = 0:
Following the same argument as above we see that either p lies on a
linear component of C, or every point of C that lies on the line x0 = 0
also lies on the line y0 = 0. It follows that (p, C) /∈ X−, a contradiction.

Case 3 – p lies on the line x0 = 0, but not on the line y0 = 0:
Again, following the same argument as above we see that p lies on
a linear component of C. This implies that (p, C) /∈ X−, which is
impossible.

Case 4 – p does not lie on either of the lines x0 = 0 or
y0 = 0: In this case, l = m = 0. As above, we see that ak0,k1 = 0
if k0 and k1 are both less than d, and ad,k = 0 for k < d − 1. Now,
if (d − 3

2
)(r0 + r1) ≤ (d − 6)r0 + dr1, then 3r0 ≤ r1, so t(r0 + r1) >

(d− 3
2
)(r0 + r1) ≥ dr0 + (d− 2)r0. It follows that either ad,d−1 = 0, in

which case C is a union of 2d lines, which is impossible, or ak,d = 0 for
all k < d− 2. We therefore see that C is of the form

C = xd−2
0 yd−1

0 (ad,dx
2
0y0 + ad,d−1x

2
0y1 + ad−1,dx0x1y0 + ad−2,dx

2
1y0).

Thus, C consists of three components. One is a curve of bidegree (2, 1).
The other two components consist of multiple lines through one of the
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points on this curve that has a tangent line. The point p is forced to
be the unique other such point.

It is clear that this (p, C) ∈ X−, since by definition, one of the
lines through p intersects C with multiplicity greater than 1, and it
is impossible for it to intersect a smooth curve of bidegree (2, 1) with
higher multiplicity than 2, or for the other line through p to intersect
the curve with multiplicity at all. To see that (p, C) /∈ Xss(t0 − ε),
consider the 1-parameter subgroup with weights (−1, 1,−2, 2).

Finally, notice that all such curves are in the same orbit of the action
of G, so X0 must be the set of all such curves. To see this, note that
if we fix the two points that have tangent lines to be (1, 0 : 1, 0) and
(0, 1 : 0, 1), then the curve is determined uniquely by the third point
of intersection of the curve with the diagonal. Since PSL(2,C) acts
3-transitively on points of P 1, we obtain the desired result.

�

Corollary 5.6. The map X//t0−εG → X//t0G contracts the locus
H0,1\H1,1 to a point. Outside of this locus, the map is an isomorphism.

Proof. Let C = xd−2
1 yd−1

1 (x2
0y1 + x2

1y0), and p = (0, 1 : 0, 1). Then
(p, C) ∈ X0. As we have seen, X0 is the orbit of (p, C), so G · (p, C)
is closed in Xss(t0) and X0//t0G is a point. Notice that the stabilizer
of (p, C) must fix p = (0, 1 : 0, 1), and the other ramification point,
which is (1, 0 : 1, 0). Thus, the stabilizer of (p, C) must consist solely
of pairs of diagonal matrices. A quick check shows that the stabilizer of
(p, C) is the one-parameter subgroup with weights (−1, 1,−2, 2), which
is isomorphic to C∗. Again, the conclusion follows from Theorem 2.2.

�

Our main interest is the case where d = 3. As above, this is because
in this case X//t0−εG is a birational model for M4,1. In particular, we
have the following:

Proposition 5.7. There is a birational contraction β : M4,1 99K
X//t0−εG.

Proof. As above, it suffices to exhibit a morphism β−1 : V → M4,1,
where V ⊆ X//t0−εG is open with complement of codimension ≥ 2 and
β−1 is an isomorphism onto its image. Again, we let U ⊆ Xss(t0 − ε)
be the set of all moduli stable pointed curves (p, C) ∈ Xss(t0− ε). The
proof in this case is exactly like that in the case of P 2, as the discrim-
inant locus ∆ ⊆ X is again an irreducible G-invariant hypersurface.

By the universal property of the moduli space, since U is a family
of moduli stable curves, it admits a unique map U → M4,1. Since U
is contained in the semistable locus and this map is G-equivariant, it
factors uniquely through a map U//t0−εG→M4,1. Since every curve of
bidegree (3, 3) on P 1×P 1 is canonical, two such curves are isomorphic
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if and only if they differ by an automorphism of P 1 × P 1. It follows
that this map is an isomorphism onto its image.

�

Theorem 5.8. There is a birational contraction of M4,1 contracting
the pointed Brill-Noether divisor BN1

3,(0,2). Moreover, if P is the Petri

divisor, then the divisors BN1
3,(0,2), P , ∆1, ∆2, and ∆3 span a simplicial

face of NE
1
(M4,1).

Proof. The composition M4,1 99K X//t0−εG → X//t0G is a birational
contraction. By the above, the given pointed Brill-Noether divisor is
contracted by this map. It therefore suffices to show that the isomor-
phism β−1 constructed in the preceding theorem does not contain in
its image the generic point of P or ∆i for i ≥ 1. Every smooth curve
in X is Gieseker-Petri general, since its canonical embedding lies on a
smooth quadric, so the generic point of P is not contained in the image
of β−1. For ∆i this again follows directly from the fact that ∆ ∩ U is
an irreducible divisor in U whose generic point is an irreducible nodal
curve.

�
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