MA 330 In-Class Work

Proof of the infinitude of primes, essentially due to Euler, though he missed some
details. This is taken from Proofs from the Book, by M. Aigner and G. Ziegler,
Chapter 1.

For any real number z, let w(z) := #{p < x : p prime}, i.e. w(z) is the number of primes less
than or equal to . Number the primes P := {p;,p2,p3,...} in increasing order. Recall that the
natural log function is defined by N
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The main idea is to compare the graph of 1/t with an “upper step function,” namely the function
that has the value 1/n for all  between n and n + 1. Note that the area under the graph of the
step function between 1 and n is greater than the area under the graph of 1/t between 1 and n.

So, because the natural log is defined as the area under the graph of 1/¢, for all x such that
n <x <n-+1 we see that
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where M (x) is the set of all positive integers having prime divisors no larger than x.
The key step in the proof comes next! How exciting! What we need to do is show that we have
the following equality:
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(Make sure you do this! It feels awesome to understand how this works!)
Once you have proved this claim, then note that the infinite series in parentheses on the right-
hand side above is a geometric series, so
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Thus, putting all this together, we have
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Since p > k + 1 (this is “clear” if you think about it in the right way, since py is the k-th
prime. .. remember, we ordered them p; then ps etc), we have

Dk 1 1 k41
pr—1 * pr—1 7 + k k
Therefore,
()
1
In(z) < k:% =m(z)+1.
k=1

(Why is that last equality true? Work through a few examples.)

We all know that In(z) gets arbitrarily large as x — o0o. So, since m(x) is greater than In(x), it
must be that 7(x) gets arbitrarily large as * — oo as well. Hence, there must be infinitely many
primes.



