
LIFTING DIVISORS ON A GENERIC CHAIN OF LOOPS

DUSTIN CARTWRIGHT, DAVID JENSEN, AND SAM PAYNE

Abstract. Let C be a curve over a complete valued field with infinite
residue field whose skeleton is a chain of loops with generic edge lengths.
We prove that any divisor on the chain of loops that is rational over
the value group lifts to a divisor of the same rank on C, confirming a
conjecture of Cools, Draisma, Robeva, and the third author.

1. Introduction

The tropical proof of the Brill-Noether Theorem in [CDPR12] gives a
classification of the special divisors on a chain of g loops with generic edge
lengths. The same argument works for a generic chain of loops with bridges,
as studied in [JP14], since it depends only on the tropical Jacobian and
the image of the Abel-Jacobi map. Suppose Γ is such a chain of loops
with or without bridges, as shown in Figure 1, and C is a curve over a
complete valued field K with totally split reduction and skeleton Γ. The
classification of special divisors on Γ shows in particular that the polyhedral
set W r

d (Γ) ⊂ Picd(Γ) parametrizing divisor classes of rank at least r has pure
dimension equal to

(1) ρ(g, r, d) = g − (r + 1)(g − d+ r),

which is the dimension of the analogous Brill-Noether locus W r
d (C) ⊂ Picd(C)

for the algebraic curve C.
The real torus Picd(Γ) is canonically identified with the skeleton of the

Berkovich analytic space Picd(C)an [BR13]. Furthermore, the tropicalization
map given by retraction to this skeleton respects dimension [Gub07] and
maps W r

d (C)an into W r
d (Γ) [Bak08], so the coincidence of dimensions suggests

the possibility that W r
d (Γ) might be equal to the tropicalization of W r

d (C).
Our main result confirms this possibility and proves [CDPR12, Conj. 1.5]
over complete fields with infinite residue field.

Theorem 1.1. Let K be a complete field with infinite residue field, and let
C be a smooth projective curve of genus g over K. If C has totally split
reduction and skeleton is isometric to Γ then every divisor class on Γ that is
rational over the value group of K lifts to a divisor class of the same rank
on C.
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Figure 1. The bridges of Γ have arbitrary non-negative
lengths and the edges of the cycles have generic positive
lengths. The precise genericity condition is given at the
beginning of Section 2.

One interesting special case is when ρ(g, r, d) is zero. In this case, the chain
of loops Γ has exactly

(2) λ(g, r, d) = g!
r∏
i=0

i!

(g − d+ r + i)!

divisor classes of degree d and rank r, which is equal to the number of
divisor classes of degree d and rank r on a general curve of genus g [GH80].
Theorem 1.1 then shows that the tropicalization map from W r

d (C) to W r
d (Γ)

is bijective.

Remark 1.2. The special case of Theorem 1.1 where r = 1 and ρ(g, r, d) = 0
is due to Cools and Coppens, who gave a proof using the basepoint free
pencil trick [CC10]. Kawaguchi and Yamaki recently proved analogous lifting
theorems for special divisors on skeletons of totally degenerate hyperelliptic
curves and non-hyperelliptic curves of genus 3. Their results include the
special cases of Theorem 1.1 where g is at most 3 [KY13, KY14].

While Theorem 1.1 establishes Conjecture 1.5 from [CDPR12] for complete
valued fields with infinite residue field, the conjecture can be false when the
residue field is finite, as in the following example.

Example 1.3. Suppose Γ is a chain of g ≥ 2 loops with generic integral edge
lengths and no bridges, as in [CDPR12]. Let K = F3((t)) with the t-adic
valuation. By deformation theory, there exists a smooth projective curve X
over K with totally split reduction that has skeleton isometric to Γ [Bak08,
Thm. B.2]. Let [D] be the class of the vertex v2 as in Figure 1, which is
the unique effective divisor in its linear equivalence class. If X denotes the
regular semistable model of X, then a lift of [D] to C would give rise to an
effective divisor whose closure in X intersects the component corresponding
to v2 with multiplicity 1, and hence the intersection would be a smooth point
of this component defined over F3. However, this component is isomorphic
to P1

F3
and v2 has degree 4 in Γ, so all of its F3-rational points are nodes.

We conclude that there is no such lift.

Theorem 1.1 and [CDPR12, Thm. 1.3] for the chain of loops are together
somewhat analogous to the regeneration theorem of Eisenbud and Harris
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[EH86, Thm. 3.4] for nodal curves of compact type. The regeneration theorem
says that the space of limit linear series on a nodal curve of compact type has
dimension everywhere locally at least the expected dimension, and a point
where the local dimension is exactly the expected dimension is the limit
of a linear series on the general fiber of a one-parameter smoothing. The
following questions ask in what generality such analogues of the regeneration
theorem should hold for arbitrary metric graphs.

Question 1.4. If Γ′ is a metric graph of genus g, is the dimension of W r
d (Γ′)

everywhere locally at least ρ(g, r, d)?

Question 1.5. Let C be a totally degenerate curve over an algebraically
closed field K with skeleton Γ′. Suppose W r

d (Γ′) has local dimension ρ(g, r, d)
at the class of a divisor D and that D is rational over the value group of K.
Is there necessarily a divisor of degree d and rank r on C that tropicalizes
to D?

We now explain the general strategy used in the proof of Theorem 1.1.
Because of the totally split reduction and infinite residue field, the curve K
has infinitely many K-points. We can therefore choose a base point on the
curve so that each component of the Picard scheme of C is identified with
the Jacobian. We then study the Brill-Noether loci as subschemes

W r
d (C) ⊂ Jac(C).

Since C is totally degenerate, the universal cover of Jac(C)an gives a uni-
formization

T an → Jac(C)an,

by an algebraic torus T of dimension g. The tropicalization of this torus is
the universal cover of the skeleton of Jac(C), which is canonically identified
with the tropical Jacobian of Γ [BR13].

One of our key tools is Rabinoff’s lifting theorem [Rab12], which we apply
to the analytic preimages in T of algebraic subschemes of Jac(C). This lifting
theorem says that isolated points in complete intersections of tropicalizations
of analytic hypersurfaces lift to points in the analytic intersection with
appropriate multiplicities. We apply it to translates of the preimage of the
theta divisor ΘΓ = W 0

g−1(Γ), as follows.

The Baker-Norine definition of rank from [BN07] implicitly expresses
W r
d (Γ) as an intersection of translates of ΘΓ. In Proposition 3.2, we reinter-

pret this construction scheme-theoretically and show that the local equations
for the corresponding translates of ΘC vanish on W r

d (C). When ρ is zero, we
produce explicit translates of ΘC whose tropicalizations intersect transver-
sally with multiplicity 1 at a given point of W r

d (Γ). By Rabinoff’s lifting
theorem, applied on the universal cover of Jac(C)an, there is exactly one
point in this complete intersection over the point of W r

d (Γ). The rest of
this complete intersection is typically larger than W r

d (Γ), but the argument
shows that the tropicalization map W r

d (C)→W r
d (Γ) is injective. Since the

two sets have the same cardinality, we conclude that it is bijective.
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When ρ is positive, we consider a point x in a dense subset of W r
d (Γ) and

choose ρ additional translates of ΘΓ that meet W r
d (Γ) transversally in the

expected number of points. For each point in this intersection, we combine
the ρ previously chosen translates of ΘΓ with g − ρ additional translates
that contain W r

d (C), and then apply a similar lifting and counting argument
to conclude that x is in the image of W r

d (C)an. Since the tropicalization
map W r

d (C)an → W r
d (Γ) is proper and its image contains a dense subset,

we conclude that it is surjective. We then study the initial degenerations
of W r

d (C), and show that these are rational over the residue field of K.
Finally, since the residue field is infinite, we conclude that these initial
degenerations have smooth rational points, which lift to points over K by
Hensel’s Lemma.

The main result in [JP14] shows that if the bridges in Γ have positive
length, then C is Gieseker-Petri general, and hence W r

d (C) is smooth away

from W r+1
d (C). Our argument also gives the weaker statement that W r

d (C) is
generically smooth, but without the hypothesis that the graph Γ has bridges.
More precisely, we have:

Proposition 1.6. If C is a curve over a valued field K with skeleton iso-
metric to Γ, then W r

d (C) is reduced. In particular, if ρ(g, r, d) is zero then
W r
d (C) is smooth.

Remark 1.7. Our approach in Theorem 1.1 is inspired by the tropical
scheme theory of Giansiracusa and Giansiracusa [GG13] and the tropical
Hilbert-Chow morphism of Maclagan and Rincón [MR14]. Although the
results of those papers are not used in the proofs, our main arguments
relating various multiplicities to expressions of tropical Brill-Noether loci as
intersections of translates of the tropical theta divisor grew out of a desire
to understand W r

d (Γ) as a tropical scheme.

Remark 1.8. When finishing this paper, we learned of an independent proof
of Theorem 1.1 by Amini and Baker. Their approach uses specialization
through a point ofMg over a rank 2 valuation ring, in which the general fiber
is smooth, the intermediate fiber is a chain of elliptic curves, and the special
fiber is totally degenerate. They then proceed by connecting the tropical
theory on the special fiber with the classical theory of limit linear series on
the intermediate fiber. The methods are disjoint and complementary, and we
expect that both approaches will be fruitful for future applications, perhaps
in combination.

Acknowledgments. We would like to thank O. Amini, M. Baker, N. Gi-
ansiracusa, and W. Gubler for helpful conversations. The second author
was supported in part by an AMS-Simons Travel Grant. The third au-
thor was supported in part by NSF DMS–1068689 and by NSF CAREER
DMS–1149054.
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2. Brill-Noether loci on the chain of loops

We begin this section by reviewing the classification of special divisors
on the chain of loops with generic edge lengths Γ, following [CDPR12] to
which we refer the reader for proofs and further details. As in that paper,
we always assume that none of the ratios `i/mi is equal to the ratio of
two positive integers whose sum is at most 2g − 2. We then build up to
Proposition 2.7, which describes the local structure of W r

d (Γ) near the class
of a vertex avoiding divisor as a complete intersection of translates of the
tropical theta divisor, and Proposition 2.8, which generalizes the counting
formula (2) to the case where the dimension of W r

d (Γ) is positive.

2.1. Classification of special divisors on Γ. Recall that an effective
divisor D on a metric graph Γ′ is v-reduced, where v is a point in Γ′, if
the multiset of distances from v to points in D is lexicographically minimal
among all effective divisors equivalent to D. The v1-reduced divisors on Γ
are classified as follows. For each i, let γi be the ith loop of Γ minus vi, and
let βi be the half-open bridge (wi, vi+1]. Then Γ decomposes as a disjoint
union

Γ = {v1} t γ1 t β1 t · · · t γg,

as shown in Figure 2, and an effective divisor is v1-reduced if and only if it
contains at most one point on each of the punctured loops γi and no points
on the bridges βi.

v1

γ1

v2

β1

· · ·

γi

βi

· · ·

γg

Figure 2. A decomposition of Γ.

Since every effective divisor on Γ is equivalent to a unique v1-reduced
divisor, each effective divisor class is represented uniquely by a vector
(d0, x1, . . . , xg), where d0 is the coefficient of v1, and xi ∈ R/(`i + mi)Z
is the distance from vi to the chip on the ith punctured loop γi, measuring
counterclockwise, if such a chip exists and xi is set to 0 otherwise. An
effective divisor together with a positive integer r also determines a lingering
lattice path, which is a sequence p0, . . . , pg of points in Zr, as follows.

Definition 2.1. Let D be the v1-reduced divisor represented by the data
(d0, x1, . . . , xg). Then the associated lingering lattice path P in Zr starts at
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p0 = (d0, d0 − 1, . . . , d0 − r + 1) with the ith step given by

pi − pi−1 =


(−1,−1, . . . ,−1) if xi = 0
ej if xi = (pi−1(j) + 1)mi mod `i +mi

and both pi−1 and pi−1 + ej are in C
0 otherwise


where e0, . . . er−1 are the standard basis vectors in Zr and C is the open Weyl
chamber

C = {y ∈ Zr | y0 > y1 > · · · > yr−1 > 0}.

Proposition 2.2. [CDPR12, Theorem 4.6] A divisor D on Γ has rank at
least r if and only if the associated lingering lattice path lies entirely in the
open Weyl chamber C.

The steps where pi − pi−1 = 0 are called lingering steps, and the number of
lingering steps is at most the Brill-Noether number ρ(g, r, d) from (1).

Our representation of divisors is compatible with the Abel-Jacobi map,
as follows. We define an orientation on Γ by orienting each of the loops γi
counter-clockwise, and define a basis of 1-forms on Γ by setting ωi = dγi.
We then have the Abel-Jacobi map [MZ08, Sec. 6]:

AJ : Picd(Γ)→ Jac(Γ) =

g∏
i=1

R/(mi + `i)Z,

given by

AJ

( d∑
j=1

pj

)
:=

g∑
i=1

( d∑
j=1

∫ pj

v0

ωi

)
ei,

where ei denotes the ith standard basis vector in Rg. Specifically, the Abel-
Jacobi map sends the divisor corresponding to the data (d0, x1, . . . , xg) to
the point

g∑
i=1

(nimi + xi)ei ∈
g∏
i=1

R/(mi + `i)Z,

where ni = #{j ∈ Z | i < j ≤ g, xj 6= 0}. Together with Proposition 2.2, this
tells us that W r

d (Γ) is a union of translates of the images of the coordinate
ρ-planes in Rg, one for each lingering lattice path with ρ lingering steps.
Given such a path, if the ith step is not lingering then the ith coordinate is
fixed at (pi−1(j)+1+ni)mi, while the remaining ρ coordinates corresponding
to lingering steps are allowed to move freely. This is illustrated for (g, r, d) =
(3, 0, 2) in Figure 3.

2.2. Vertex avoiding divisors. The description of W r
d (Γ) above identifies

this tropical Brill-Noether locus with a union of subtori of dimension ρ,
corresponding to lingering lattice paths with ρ lingering steps. Our analysis
of lifting divisor classes is simplest away from the pairwise intersections of
these tori. The divisors in the complement of these intersections are called
vertex avoiding, and have the following characterization.
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Figure 3. The theta divisor in Pic2(Γ), where Γ is the chain
of 3 loops. This theta divisor is the set of all effective divisors
classes of degree 2. Here Pic2(Γ) ≡ (R/Z)3 is obtained by
identifying opposite faces of the pictured cube.

Definition 2.3. A divisor class [D] on Γ of rank r is vertex avoiding if the
following conditions hold:

(1) the associated lingering lattice path has exactly ρ lingering steps,
(2) xi 6= mi mod `i +mi for any i, and
(3) xi 6= (pi−1(j))mi mod `i +mi for any i.

The set of vertex avoiding divisor classes of degree d and rank r form a
dense open subset of W r

d (Γ). In particular, if ρ(g, r, d) is zero then every
divisor class in W r

d (Γ) is vertex avoiding. Such divisors have the following
nice property.

Proposition 2.4. Let [D] be a vertex avoiding divisor class of rank r on
Γ. Then for each 0 ≤ i ≤ r, there exists a unique divisor Di ∼ D such that
Di − iv1 − (r − i)wg is effective. Moreover,

(1) Di− iv1− (r− i)wg has no points on any of the bridges βj or vertices
wj.

(2) For i < r, Di fails to have a point on γj if and only if the jth step of
the associated lingering lattice path is in the direction ei.

(3) Dr fails to have a point on γj if and only if the jth step of the
associated lingering lattice path is in the direction (−1, . . . ,−1).

Proof. The argument is identical to the proof of [JP14, Prop. 6.2], which is
the special case where ρ(g, r, d) is zero. �

2.3. The local structure of W r
d (Γ). We now show that, in a neighborhood

of any vertex avoiding divisor class, we can describe W r
d (Γ) as an intersection

of g − ρ translates of the theta divisor ΘΓ = W 0
g−1(Γ). More specifically, we

construct g− ρ divisors of the form Ei −E′i, where Ei is effective of degree r
and E′i is effective of degree g − d+ r − 1, such that a divisor class [D′] near
[D] has rank r if and only if [D′ − (Ei − E′i)] is effective for all i.

We first describe the open neighborhoods which we will use in our proof.
For i = 1, . . . , g, fix pi in the interior of one of the two edges connecting vi
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to wi. Then, if ε is sufficiently small, the ε-neighborhood of pi consists of an
interval and we define

B(0, ε) :=

{ g∑
i=1

qi −
g∑
i=1

pi ∈ Jac(Γ) | d(pi, qi) < ε

}
.

Proposition 2.5. The map sending (q1, . . . , qg) to
∑g

i=1 qi −
∑g

i=1 pi ∈
B(0, ε) defines a homeomorphism between a product of open intervals and an
open neighborhood of zero in Jac(Γ).

Proof. It suffices to show that the Abel-Jacobi map sending the divisor∑g
i=1 qi to its class is injective. To see this, suppose that

∑g
i=1 qi ∼

∑g
i=1 q

′
i.

The divisor
∑g

i=1 qi is q′i-reduced, and hence has positive q′i-degree if and
only if qi = q′i. It follows that qi = q′i for all i. �

Definition 2.6. For any divisor D of degree d on Γ, we define

B(D, ε) = D +B(0, ε),

which is an open neighborhood of D ∈ Picd(Γ).

We now return to our description of the Brill-Noether locus.

Proposition 2.7. Let [D] ∈W r
d (Γ) be a vertex avoiding divisor class. Then

there are effective divisors E1, . . . , Eg−ρ of degree r and effective divisors
E′1, . . . , E

′
g−ρ of degree d− g + 1− r such that for some ε > 0,

W r
d (Γ) ∩B(D, ε) =

g−ρ⋂
i=1

[ΘΓ + Ei − E′i] ∩B(D, ε).

Proof. For 0 ≤ i ≤ r − 1, let Ai ⊂ {1, . . . , g} denote the set of steps of
the associated lingering lattice path in the direction ei, and let Ar be the
set of steps in the direction (−1, . . . ,−1). For 0 ≤ i ≤ r and j ∈ Ai, let
Ei = iv1 + (r − i)wg and E′i,j =

∑
k∈Ai,k 6=j pk. We show that

W r
d (Γ) ∩B(D, ε) =

r⋂
i=0

⋂
j∈Ai

[ΘΓ + Ei − E′i,j ] ∩B(D, ε).

It follows from the definition of the rank of a divisor that the left-hand-side
is contained in the right-hand side. Indeed, if some divisor D′ has rank at
least r, then for any i, D′ − Ei must be linearly equivalent to an effective
divisor, and thus the same is true for D′ − Ei + E′i,j .

It remains to show that the right-hand side is contained in the left-hand
side. Note that, by definition, any divisor class [D′] ∈ B(D, ε) is of the form

[D′] = [D −
g∑

k=1

pk +

g∑
k=1

qk]

for some qk within ε of pi. We then have

D′ − Ei + E′i,j ∼ Di − Ei +

g∑
k=1

qk −
∑
k/∈Ai

pk − pj .
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We write D′i,j for the divisor on the right. By Proposition 2.4, we know that
Di − Ei fails to have a point on γk if and only if k ∈ Ai. It follows that the
restriction D′i,j |γk has degree 1 if and only if k 6= j, and D′i,j |γj has degree 0.

More precisely, for all k /∈ Ai, D′i,j |γk is equivalent to a point within ε

of the point of Di on γk. Similarly, for k ∈ Ai, k 6= j, D′i,j |γk = qk. We

therefore see that, for k 6= j and ε sufficiently small, D′i,j |γk is not equivalent

to either of the vertices vk or wk. It follows that [D′i,j ] is effective if and

only if D′i,j |γj is effective. We must therefore have qj = pj . By varying over
all i and j, we see that qj = pj for all non-lingering steps j, and therefore
D′ ∈W r

d (Γ) by Proposition 2.2. �

2.4. A counting formula when ρ is positive. When ρ(g, r, d) = 0, the
cardinality of W r

d (Γ) agrees with the cardinality of W r
d (C), and both are

given by formula (2). We conclude this section with an analogous counting
computation when ρ(g, r, d) is positive.

If C is any algebraic curve of genus g such that W r
d (C) is ρ-dimensional,

where ρ = ρ(g, r, d), then by [ACGH85, Thm. V.1.3], the class of W r
d (C) is

wrd =

(
r∏
i=0

i!

(g − d+ r + i)!

)
·Θg−ρ.

It follows that, if W r
d (C) is generically reduced and ρ-dimensional, as is

the case when C is general by [GH80], then its intersection with ρ general
translates of Θ will consist of

wrd ·Θρ = g!
r∏
i=0

i!

(g − d+ r + i)!

distinct points. We now prove the analogous counting formula for intersec-
tions of W r

d (Γ) with translates of the tropical theta divisor.

Proposition 2.8. The intersection of W r
d (Γ) with ρ general translates of

ΘΓ consists of

g!
r∏
i=0

i!

(g − d+ r + i)!

distinct points. Moreover, if [D] ∈ W r
d (Γ) is vertex avoiding, then the ρ

translates can be chosen to all contain [D].

Proof. When ρ = 0, any lingering lattice path has no lingering steps, and
the number of rank r lattice paths with precisely (r + 1)(s+ 1) steps and no
lingering steps is

Ψ(r, s) := [(r + 1)(s+ 1)]!
r∏
i=0

i!

(s+ 1 + i)!
.

We can use this to count the number of lingering lattice paths with precisely ρ
lingering steps. To construct such a path, one can first choose the ρ lingering
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steps, and then choose a non-lingering lattice path on the remaining g − ρ
loops. It follows that the number of such paths is(

g

ρ

)
Ψ(r, g − d+ r − 1) =

(
g

ρ

)
(g − ρ)!

r∏
i=0

i!

(g − d+ r + i)!
.

As explained above, W r
d (Γ) is a union of precisely this number of translates of

ρ-dimensional coordinate tori. Recall that the theta divisor ΘΓ is a union of
translates of the g coordinate (g−1)-dimensional tori. A given ρ-dimensional
coordinate torus will therefore intersect ρ general translates of ΘΓ in ρ! points.
It follows that the intersection of W r

d (Γ) with such translates is simply a
union of (

g

ρ

)
ρ!Ψ(r, g − d+ r − 1) = g!

r∏
i=0

i!

(g − d+ r + i)!

distinct points.
For the last statement in the theorem, fix a vertex avoiding divisor class

[D] in W r
d (Γ), and let a1, . . . , aρ be the lingering steps of the lattice path

associated to D. For each 1 ≤ i ≤ ρ, let Ei be a sum of g − 1 distinct points,
one from each loop γj other than γai . The intersection W r

d (Γ)∩[ΘΓ+(D−Ei)]
contains [D], and if the Ei are chosen sufficiently general then this intersection
is transverse. �

3. Lifting divisors

In this section, we use our results on the structure of the tropical Brill-
Noether loci to prove Theorem 1.1. We begin by proving that the tropical
theta divisor is multiplicity-free.

3.1. Tropical multiplicities on Brill-Noether loci. Section 2.1 gives an
explicit description of the Brill-Noether locus W 0

d (Γ) with r = 0. Since the
tropical Jacobian of Γ is canonically identified with the skeleton of Jac(C),
and this identification is compatible with Abel-Jacobi maps [BR13], we see
that W 0

d (Γ) is the tropicalization of W 0
d (C). We now compute the tropical

multiplicities on the facets of the tropical theta divisor ΘΓ = W 0
g−1(Γ).

Lemma 3.1. Every facet of the tropical theta divisor ΘΓ has multiplicity 1.

Proof. As a consequence of Proposition 2.2, ΘΓ consists of translates of
the g coordinate codimension 1 tori in Jac(Γ), and each of these carries
a positive integer multiplicity. By Proposition 2.8, the intersection of g
general translates of ΘΓ consists of precisely g! distinct points, and each of
these points is endowed with a tropical intersection multiplicity m equal
to the product of the multiplicities of the facets. By Rabinoff’s lifting
theorem [Rab12], applied on the universal cover of Jac(Γ), m · g! is the
number of intersection points, counted with multiplicity, in the intersection
of g general translates of ΘC ⊂ Jac(C). Because the theta divisor provides a
principal polarization of the Jacobian, the intersection number Θg is g!. It
follows that m is 1, and hence every facet of ΘΓ has multiplicity 1. �
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3.2. Local equations. We begin by proving an analogue of the local equa-
tions from Proposition 2.7, but for algebraic curves. In particular, if D
and E are effective divisors on an algebraic curve C then r(D)− deg(E) ≤
r(D−E) ≤ r(D), which gives a set-theoretic containment of the correspond-
ing Brill-Noether loci. Our next result shows that this containment is in fact
scheme-theoretic.

Proposition 3.2. Let C be a curve. Fix integers d and r and an effective
divisor E of degree e. Let ϕ : Picd−e(C) → Picd(C) be the isomorphism
defined by sending [D] to [D + E]. Then there is a chain of inclusion of
subschemes

W r+e
d (C) ⊆ ϕ(W r

d−e(C)) ⊆W r
d (C).

Proof. We use the following scheme-theoretic description of Brill-Noether
loci, the details of which can be found in Chapter IV.3 of [ACGH85]. Choose
an auxiliary effective divisor F of degree m ≥ 2g − d+ e+ 1, and let L be a
Poincaré line bundle on Picd(C) × C. We then have an exact sequence of
sheaves

0→ L → L(F )→ L(F )|F → 0.

If ν : Picd(C) × C → Picd(C) is the projection map, then W r
d (C) is the

determinantal variety defined by the (m+ d− g+ 1− r)× (m+ d− g+ 1− r)
minors of the map of vector bundles ν∗L(F )→ ν∗L(F )|F .

Since ϕ is an isomorphism, and (ϕ×id)∗L(−E) is a Poincaré line bundle on
Picd−e(C)×C, the ideal of ϕ(W r

d−e(C)) is defined by the (m+d−e−g+1−
r)× (m+d−e−g+1−r) minors of ν∗L(F −E)→ ν∗L(F −E)|F . Note that
L(F −E)|F = L(F )|F and also that there is an injection L(F −E)→ L(F ),
which pushes forward to an injection. Putting these together, we have an
exact sequence

(3) 0→ ν∗L(F − E)→ ν∗L(F )→ ν∗L(F )|F ,

where W r
d (C) is defined by the minors of the last map, and ϕ(W r

d−e(C)) is
defined by the minors of the composition.

To finish the proof, we may work locally, so we replace (3) with an exact
sequence of vector spaces:

0→ U → U ⊕ V →W.

Note that U has dimension d+m−g−e+1 and V has dimension e. Consider
the matrix representing the map U⊕V →W . The ideal of its (k+e)×(k+e)
minors is contained in the ideal of k × k minors of the map U →W , which
is contained in the ideal of k × k minors of the map U ⊕ V → W . Taking
k = m+ d− g − e+ 1− r, gives the desired inclusion of schemes. �

Corollary 3.3. Fix a curve C and integers d, r ≥ 0. Let E and E′ be
effective divisors of degree r and g− 1− d+ r, respectively. Let ϕ be the map
from Picd(C) to Picg−1(C) taking [D] to [D−E+E′]. Then ϕ(W r

d (C)) ⊆ ΘC .
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3.3. Proof of main theorem. We now prove Theorem 1.1, using the
lifting theorem from [Rab12] for 0-dimensional complete intersections. When
ρ(g, r, d) is positive, we intersect W r

d (Γ) with ρ(g, r, d) translates of the theta
divisor and use the counting formula from Proposition 2.8.

Proof of Theorem 1.1. We first consider the case where [D] ∈ W r
d (Γ) is a

vertex avoiding divisor class and K is algebraically closed. By Proposition
2.8, there exist divisors E1, . . . , Eρ of degree d− g + 1− r such that [D] is
contained in the intersection

X =

ρ⋂
i=1

[ΘΓ + Ei] ∩W r
d (Γ)

and

|X| = g!
r∏
i=0

i!

(g − d+ r + i)!
.

We let Ei be a divisor on C which tropicalizes to Ei. We define X ⊂ Picd(C)
to be the intersection

X =

ρ⋂
i=1

[ΘC + Ei] ∩W r
d (C),

which is a finite scheme because Trop(X ) is contained in X, which is finite.
Now let [D′] be one of the finitely many points in X, and we apply

Proposition 2.7 to see that in a neighborhood of [D′], we can write W r
d (Γ)

as an intersection
g−ρ⋂
i=1

ΘΓ + [E′i − E′′i ],

where E′i and E′′i are effective divisors of degree r and d− g + 1 respectively.
As before, we lift each of these to effective divisors E ′i and E ′′i on C. By
Corollary 3.3, W r

d (C) is contained in ΘC + [E ′i − E ′′i ] for each i.
Near [D′], the hypersurfaces Trop(ΘC + [Ei]) and Trop(ΘC + [E ′i − E ′′i ])

are translates of coordinate planes, all with multiplicity 1 by Lemma 3.1.
Therefore, it follows from [Rab12] that there is exactly one reduced point
tropicalizing to [D′] in the intersection of

ΘC + [E1], . . . ,ΘC + [Eρ], and ΘC + [E ′1 − E ′′1 ], . . . , θC + [E ′g−ρ − E ′′g−ρ].
While these hypersurfaces contain X , it’s not true that they form a complete
set of defining equations, so this only shows that tropicalization is an injec-
tion from X to X. However, these two sets have the same cardinality, by
Proposition 2.8 and [ACGH85], so we have a bijection. In particular, there
exists a divisor class [D] ∈W r

d (C) such that Trop([D]) = [D].
Since K is algebraically closed, the set of vertex avoiding divisors which

are rational over the value group of K form a dense set of W r
d (Γ), and

the lifting argument above shows that each of these is in Trop(W r
d (C)).

Since Trop(W r
d (C)) is closed, it follows that Trop(W r

d (C)) is equal to W r
d (Γ).
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Therefore, even if we drop the assumption that [D] is vertex-avoiding, the
preimage of any point in W r

d (Γ) that is rational over the value group of K is
a nonempty strictly K-analytic domain in W r

d (C)an. Since K is algebraically
closed, the K-points are dense in this domain.

We now additionally drop our assumptions that K is algebraically closed.
The argument above still shows that the preimage of [D] is a nonempty
strictly K-analytic domain W[D] in W r

d (C), and it just remains to show that
this domain contains a K-rational point. Since C has totally split reduction,
the preimage of [D] in Picd(C)an is an annulus, and is the generic fiber of a
formal scheme whose special fiber is a torus Gg

m over the residue field. Let
W be the closure of W[D] in this formal scheme, and let W0 be the special

fiber of W. By construction, W0 is a subscheme of Gg
m over the residue field,

and by [CLD12, Lem. 6.9.5], the tropicalization Trop(W0) is the local cone
of Trop(W r

d (C)) = W r
d (Γ) at [D]. The results of Section 2.1 show that this

local cone is a union of ρ-dimensional coordinate linear subspaces, and the
lifting argument above shows that each of these has multiplicity 1.

Choose one of these linear spaces and then the coordinates of the linear
space define a map π from Gg

m to Gρ
m. Since the facets of Trop(W0) have

multiplicity 1, this map has tropical degree 1, and hence π is birational on
one of the components of W0. Since the residue field is infinite, the rational
points in Gρ

m are Zariski dense. In particular, there is a rational point in
the dense open subset over which π is an isomorphism. Therefore, there is a
smooth rational point in W0, and this lifts to a K-point in W by Hensel’s
Lemma. In particular, there is a K-rational point of W r

d (C) in the preimage
of [D], as required. �

Proof of Prop. 1.6. From the proof of Theorem 1.1, we know that the inter-
section of W r

d (C) with ρ translates of the theta divisor consists of distinct
reduced points. Thus, W r

d (C) is smooth at those points and so it is generi-
cally reduced. However, W r

d (C) is a determinantal locus and hence Cohen-
Macaulay, so it has no embedded points, and thus W r

d (C) is everywhere
reduced. �
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